6.2 - Unit Circle and the six trigonometric functions

Recall a circle of radius, \(r \), centered at the origin \((0,0)\) has an equation written as:

\[
\text{Circumference of a circle of radius, } r, \text{ is} \]

\[
C = \]

For a UNIT CIRCLE, we must have a radius, \(r \), of 1 unit (that is \(r = 1 \))

\[
\text{Circumference of the unit circle is:} \]

\[
C = \]

New Section 1 Page 1
Imagine placing one end of a retractable string at the point \(P = (1,0) \) on the unit circle in the \(xy \)-plane. Let \(t \) be any real number where \(t = 0 \) is at \(P = (1,0) \) and for \(t > 0 \) (string expands counterclockwise) and \(t < 0 \) (string expands clockwise).

- Pull the string to travel around the unit circle clockwise to \((0,1)\) --- the distance it has traveled is \(t = \)
- Pull the string to travel around the unit circle clockwise to \((-1,0)\) --- the distance it has traveled is \(t = \)
- Pull the string to travel around the unit circle clockwise to \((0,-1)\) --- the distance it has traveled is \(t = \)
- Pull the string to travel around the unit circle clockwise to \((1,0)\) --- the distance it has traveled is \(t = \)

Indicate the point on the unit circle below where: (A) traveled \(t = \frac{2\pi}{3} \) and (B) traveled \(t = -\frac{3\pi}{4} \).
No matter what real number t we choose, there is a unique point $P = (x, y)$ on the unit circle. The coordinates of the point $P = (x, y)$ on the unit circle corresponding to the real number t allow us to define six trigonometric functions:

1. Sine function
2. Cosine function
3. Tangent function
4. Cosecant function
5. Secant function
6. Cotangent function
Determine if the point P lives on the unit circle.

(a) $P = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right)$
(b) $P = \left(\frac{2}{5}, \frac{3}{5} \right)$
(c) $P = \left(-\frac{\sqrt{5}}{3}, \frac{2}{3} \right)$

Let $P = \left(-\frac{\sqrt{5}}{3}, \frac{2}{3} \right)$ be a point on the unit circle that corresponds to a real number t.

Find the 6 trigonometric functions based on the point P.
Let \(t \) be any real number and \(P = (x, y) \) is any point on the unit circle corresponding to \(t \).

\(\theta \) is an angle in standard position measured in RADIANS whose terminal side if the ray from the origin thru \(P = (x, y) \).

*** Since this is on the unit circle where \(r = 1 \) we must have that

\[
\begin{align*}
\sin(\theta) &= \\
\cos(\theta) &= \\
\tan(\theta) &= \\
\csc(\theta) &= \\
\sec(\theta) &= \\
\cot(\theta) &=
\end{align*}
\]

To find the EXACT value of a trigonometric function of an angle \(\theta \) (or real number \(t \)), we need to find the point \(P = (x, y) \) on the unit circle where the ray intersects the unit circle. There are a few NICE ANGLES that this can be done easily for.

Find the exact value of the SIX trigonometric function where \(\theta = \pi \)
6.2 - cont.

Find the exact value of the SIX trigonometric functions for \(\theta = \frac{\pi}{4} = 45^\circ \)

Find the exact value the following trigonometric function where \(\theta = \frac{5\pi}{4} \)
Find the exact value of the SIX trigonometric functions for \(\theta = \frac{\pi}{6} \) and \(\theta = \frac{\pi}{3} \).

What is the point \(P = (x, y) \) where \(\theta = \frac{2\pi}{3} \)?
Evaluate the following trigonometric function based on the given angle:

(a) \[\tan \left(\frac{4\pi}{3} \right) = \]

(b) \[\sec \left(\frac{11\pi}{6} \right) = \]

(c) \[\sin \left(60^\circ \right) - \cos \left(150^\circ \right) = \]
6.2 - Extension of unit circle to any circle of radius \(r \)

Noticing the similar triangles we can justify that the ratios of corresponding sides are **EQUAL**.

That is,

\[
x^2 + y^2 = r^2
\]

Example: Let the point \(P = (-2, 5) \) be on the terminal side of an angle \(\theta \) in standard position. Find the exact values of the six trigonometric functions.