Objectives

• Explain virtualization and identify characteristics of virtual network components
• Create and configure virtual servers, adapters, and switches as part of a network
• Describe techniques for incorporating virtual components in VLANs
• Explain methods for remotely connecting to a network, including dial-up networking, virtual desktops, and thin clients
Objectives (cont’d.)

• Discuss VPNs (virtual private networks) and the protocols they rely on
• Identify the features and benefits of cloud computing and NaaS (Network as a Service)
Virtualization

• Emulation of a computer, operating system environment, or application:
 – On a physical system
• Virtual machines (VMs)
 – Virtual workstations
 – Virtual servers
 – Can be configured to use different types of:
 • CPU
 • Storage drive
 • NIC
Virtualization (cont’d.)

• VM appears to user no different than physical computer:
 – Running the same software
• Host
 – Physical computer
• Guest
 – Virtual machines
• Hypervisor
 – Manages virtual machines
Figure 10-1 Elements of virtualization

Courtesy Course Technology/Cengage Learning
Virtualization (cont’d.)

• Advantages of virtualization
 – Efficient use of resources
 – Cost and energy savings
 – Fault and threat isolation
 – Simple backups, recovery, and replication

• Disadvantages
 – Compromised performance
 – Increased complexity
 – Increased licensing costs
 – Single point of failure
Virtual Network Components

• Virtual network
 – Can be created to consist solely of virtual machines on a physical server
• Most networks combine physical and virtual elements
Virtual Machines and Adapters

• Virtualization program
 – Assigns VM’s software and hardware characteristics
 – Often easy to use, step-by-step wizard

• Operating system images
 – Available for download online
 • Or on disc from software vendors

• Network connection
 – Requires virtual adapter (vNIC)
Figure 10-2 Specifying a VM’s memory in VMware

Courtesy Course Technology/Cengage Learning
Figure 10-3 Customizing vNIC properties in VMware

Courtesy Course Technology/Cengage Learning
Virtual Switches and Bridges

• Virtual bridge or switch
 – Created when first VM’s NIC is selected
 – Connects VM with host
 – Resides in RAM

• Virtual switch
 – Logically defined device
 – Operates at Data Link layer
 – Passes frames between nodes

• Virtual bridge
 – Connects vNICs with a network
Figure 10-4 Virtual servers on a single host connected with a virtual switch

Courtesy Course Technology/Cengage Learning
Figure 10-5 Virtual switches exchanging traffic through routers

Courtesy Course Technology/Cengage Learning
Network Connection Types

• Must identify networking mode vNIC will use
• Frequently-used network connection types
 – Bridged
 – NAT
 – Host-only
• Bridged
 – vNIC accesses physical network using host machine’s NIC
 – Obtains own IP address, default gateway, and netmask from DHCP server on physical LAN
Figure 10-6 vNIC accessing a network in bridged mode

Courtesy Course Technology/Cengage Learning
Figure 10-7 Selecting the Bridged option for a vNIC in VMware

Courtesy Course Technology/Cengage Learning
Network Connection Types (cont’d.)

• NAT
 – vNIC relies on host to act as NAT device
 – Obtains IP addressing information from host
 – Virtualization software acts as a DHCP server
 – Default network connection type in VMware, VirtualBox, and KVM

• Host-only
 – VMs on one host can exchange data with each other and the host
 – Cannot communicate with nodes beyond the host
 – Never receive or transmit data with host’s physical NIC
Figure 10-8 vNIC accessing a network in NAT mode

Courtesy Course Technology/Cengage Learning
Figure 10-9 Selecting the NAT option for a vNIC in VirtualBox

Courtesy Course Technology/Cengage Learning
Figure 10-10 Host-only network configuration

Courtesy Course Technology/Cengage Learning
Virtual Appliances

• Alternative to test servers for new software
• Virtual appliance includes:
 – Image of operating system, software, hardware specifications, and application configuration
• Most commonly virtual servers
• Popular functions
 – Firewall
 – E-mail solutions
 – Network management
 – Remote access
Virtual Networks and VLANs

• Virtual network
 – Refers to how VMs connect with other virtual and physical network nodes

• Virtual network management
 – Nearly identical to physical network management

• To add VMs to a physical VLAN:
 – Modify virtual switch’s configuration
 • Steps vary for different virtualization programs
Figure 10-11 Multiple virtual servers connected to multiple VLANs

Courtesy Course Technology/Cengage Learning
Remote Access and Virtual Computing

• Remote access
 – Allows user to connect with LAN or WAN in different geographical location
 – Allows access to shared resources as any other client on LAN or WAN
 – Requires transmission path and appropriate software

• Popular remote access techniques
 – Dial-up networking
 – Microsoft’s Remote Access Service (RAS)
 • Or Routing and Remote Access Service (RRAS)
 – Virtual Private Networks
Dial-Up Networking

- Dialing directly into private network’s or ISP’s remote access server
- Usually refers to connection using PSTN
- Remote access server attached to group of modems
- Client must run dial-up software
- After authentication, user allowed access
- Remote access server can serve multiple users
- Low throughput
- Less popular today
Remote Access Servers

• Accepts connections regardless of Internet connection type
• RRAS (Routing and Remote Access Service)
 – Microsoft’s remote access software
 – Available with Server 2003, 2008, 2008 R2, XP, Vista, and 7 operating systems
 – Enables server to act as a router
 – Includes multiple security provisions
Figure 10-12 Clients connecting with a remote access server

Courtesy Course Technology/Cengage Learning
Remote Access Protocols

• SLIP (Serial Line Internet Protocol)
 – Earlier and less sophisticated than PPP
 – Can only carry IP packets
 – Requires significant amount of setup
 – Does not support data encryption
 – Asynchronous transmission

• PPP (Point-to-Point Protocol)
 – Known as PPPoE when used over Ethernet
 – Standard for connecting home computers to ISP
 • Via DSL or broadband cable
Remote Virtual Computing

- Allows workstation to remotely access and control another workstation
- Host may allow clients a variety of privileges
- Can send keystrokes and mouse clicks to the host
 - Receive screen output in return
- Thin client
 - Workstation that uses such software to access LAN
 - Requires very little hard disk space or processing power
Figure 10-13 Protocols used in a remote access Internet connection

Courtesy Course Technology/Cengage Learning
Remote Virtual Computing (cont’d.)

• Advantages
 – Simple to configure
 – Runs over any connection type
 – Single host can accept simultaneous connections from multiple clients

• Popular programs
 – Microsoft Remote Desktop
 – VNC (Virtual Network Computing)
 – ICA (Independent Computing Architecture)
Remote Virtual Computing (cont’d.)

- Remote desktop
 - Comes with Windows client and server operating systems
- VNC (Virtual Network Computing)
 - Open source system
- ICA (Independent Computing Architecture)
 - Citrix System’s XenApp
 - Can work with virtually any operating system or application
 - Easy to use
VPNs (Virtual Private Networks)

- Logically defined networks over public transmission systems
 - Isolated from other traffic on same public lines
- Requires inexpensive software
- Important considerations
 - Interoperability
 - Security
- Types
 - Site-to-site
 - Client-to-site
Figure 10-14 Site-to-site VPN

Courtesy Course Technology/Cengage Learning
Figure 10-15 Client-to-site VPN

Courtesy Course Technology/Cengage Learning
VPNs (cont’d.)

• Enterprise-wide VPN
 – Can include elements of client-to-site and site-to-site models
• VPNs tailored to customer’s distance, user, and bandwidth needs
• Two major types of tunneling protocols
 – PPTP (Point-to-Point Tunneling Protocol)
 – L2TP (Layer 2 Tunneling Protocol)
Cloud Computing

- Internet frequently pictured as a cloud
- Cloud computing
 - Flexible provision of data storage, applications, and services
 - To multiple clients over a network
- Cloud computing distinguishing features
 - Self-service and on-demand
 - Elastic
 - Supports multiple platforms
 - Resource pooling and consolidation
 - Metered service
Figure 10-16 Example of cloud computing

Courtesy Course Technology/Cengage Learning
Cloud Computing (cont’d.)

• Can provide virtual desktops
 – Operating environments hosted virtually
 – Different physical computer than one user interacts with

• NaaS (Network as a Service)
 – Service provider offers customers complete set of networking services

• Types of delivery
 – Public cloud
 – Private cloud
Summary

- Virtualization: emulation of a computer, operating system environment, or application on a physical system
- VMs exist as files on physical computer’s hard disk
- Hypervisor software manages resource allocation and sharing among virtual machines
- Virtual switch allows VMs to communicate with each other and with nodes on a physical LAN or WAN
- Different methods of remote user access exist
- Cloud computing provides storage, applications, or services over a network