Solid Edge ST8
Basics and Beyond

Online Instructor
Contents

Introduction .. xvi
Topics covered in this Book ... xvi

Chapter 1: Getting Started with Solid Edge ST8 .. 1
Introduction to Solid Edge ST8 ... 1
Starting Solid Edge ST8 ... 3
File Types .. 4
User Interface ... 4
Environments in Solid Edge .. 5
Part environment (Synchronous and Ordered) ... 5
Assembly environment .. 5
Draft environment .. 6
Sheet Metal environment ... 6
Application Menu .. 7
Quick Access Toolbar .. 7
Graphics Window .. 8
Prompt Bar .. 8
Status Bar .. 8
Quick View Cube .. 9
Command bar ... 10
Changing the display of the Ribbon ... 10
Dialogs .. 11
Radial Menus ... 11
Shortcut Menus ... 12
Starting a new document ... 12
The New dialog ... 12
Solid Edge Options ... 12
View Overrides dialog ... 13
Solid Edge Help ... 13
Questions ... 14

Chapter 2: Sketch Techniques .. 15
Create Sketches in the Synchronous mode ... 15
Create Sketches in the Ordered mode .. 15

Draw Commands .. 16
 The Line command .. 17
 Using Grid and Snap settings .. 17
 The Tangent Arc command ... 18
 The Arc by 3 Points command .. 19
 The Arc by Center Point command .. 19
 The Rectangle by Center command .. 19
 The Rectangle by 2 Points command .. 20
 The Rectangle by 3 Points command .. 20
 The Polygon by Center command .. 20
 The Circle by Center Point command .. 21
 The Circle by 3 Points command ... 21
 The Tangent Circle command ... 21
 The Ellipse by Center Point command ... 22
 The Ellipse by 3 Points command ... 22
 The Curve command .. 22
 The Smart Dimension command .. 23
 The Distance Between command .. 24
 The Angle Between command .. 25
 Driving Vs Driven dimensions .. 25
 IntelliSketch Auto-Dimensions .. 26

Geometric Relations .. 27
 Connect ... 27
 Parallel ... 27
 Concentric .. 27
 Lock ... 28
 Horizontal/Vertical ... 28
 Equal .. 28
 Perpendicular ... 29
 Rigid Set .. 29
 Tangent ... 30
 Symmetric .. 31
Guide Curves ... 143
Section Geometry .. 144
Loft Cutout ... 146
Examples... 146
Example 1 (Millimetres) ... 146
Questions .. 149
Exercises .. 150
Exercise 1 .. 150

Chapter 8: Additional Features and Multibody Parts ... 151
Rib.. 151
Web Network ... 152
Mounting Boss .. 152
Lip.. 153
Vent ... 154
Slot .. 155
Multi-body Parts .. 156
Creating Multibodies .. 156
Split ... 157
Union .. 158
Intersect ... 159
Subtract ... 159
Multi Body Publish .. 159
Emboss ... 160
Examples... 161
Example 1 (Millimetres) ... 161
Questions .. 165
Exercises .. 165
Exercise 1 .. 165
Exercise 2 .. 166
Exercise 3 (Inches) ... 167

Chapter 9: Modifying Parts .. 169
Face Relations... 169
Center-Plane Relationship.. 191
Match Coordinate Systems Relationship.. 192
Rigid Set Relationship... 193
Ground Relationship... 193
Path Relationship... 193
Cam Relationship.. 194
Check Interference... 194
Capture Fit.. 195
Editing and Updating Assemblies.. 196
Replace Part.. 197
Repair Missing Files.. 198
Pattern.. 199
Mirror Components.. 200
Sub-assemblies.. 200
Rigid and Adjustable Sub-Assemblies... 201
Transfer.. 201
Disperse.. 202
Assembly Features.. 202
Assembly-Driven Part Features.. 204
Part Features... 205
Top Down Assembly Design.. 205
Create Part In-Place.. 205
Exploding Assemblies... 208
Examples... 213
Example 1 (Bottom Up Assembly).. 213
Example 2 (Top Down Assembly).. 218
Questions.. 226
Exercise 1.. 226

Chapter 11: Drawings.. 229
Starting a Drawing.. 229
View Creation... 230
Principal View.. 231
Auxiliary View.. 232
Bend ... 276
Jog .. 277
Dimple ... 278
Drawn Cutout .. 279
Bead ... 279
Louver ... 280
Gusset .. 281
Cut ... 283
Creating Cut across Bends ... 283
Break Corner .. 283
Flat Pattern ... 284
Lofted Flange ... 284
Thin Part to Synchronous Sheet Metal ... 286
Part to Sheet Metal .. 287
Sheet Metal Drawings .. 288
Export to DWF ... 290
Examples ... 291
Example 1 ... 291
Questions .. 300
Exercises .. 300
Exercise 1 .. 300
Exercise 2 .. 301
Chapter 13: Surface Design ... 303
Extruded Surface ... 304
Revolved Surface ... 304
Keypoint Curve .. 305
Curve by Table ... 305
Intersection ... 306
Project .. 307
Cross ... 307
Wrap Sketch ... 307
Contour .. 308
Isocline .. 308
Derived .. 308
Split .. 309
Intersection Point ... 309
Swept Surfaces ... 309
BlueSurf ... 311
BlueSurf between cross-sections ... 311
BlueSurf using Cross-sections and Guide Curves .. 312
Bounded.. 313
Ruled Surfaces.. 315
Offset ... 317
Redefine .. 318
Copy .. 318
Creating Surface Blends.. 319
Trim ... 320
Extend ... 321
Intersect.. 322
Stitched Surfaces .. 322
Thicken .. 323
Replace Face ... 323
Split .. 324
Example .. 324
Drawing the Layout Curves .. 325
Creating the Front Surface ... 327
Creating the Label surface .. 329
Creating the Back surface ... 330
Trimming the Unwanted Portions .. 331
Creating the Handle Surface .. 332
Trimming the Handle ... 333
Blending the Top handle .. 335
Blending the Bottom handle ... 335
Creating the Neck and Spout ... 338
Rounding the Label Faces ... 339
Creating the Bottom Face ... 340
Rounding the Bottom Face...340
Blending the Bluesurface and Main body...341
Adding thickness to the model...341
Creating threads ..342
Embossing the label faces...343
Measuring the Volume of the bottle..346
Questions ...346
Introduction

Welcome to the *Solid Edge ST8 Basics and Beyond* book. This book is written to assist students, designers, and engineering professionals. It covers the important features and functionalities of Solid Edge using relevant examples and exercises.

This book is written for new users, who can use it as a self-study resource to learn Solid Edge. In addition, experienced users can also use it as a reference. The focus of this book is part modeling, assembly modeling, drawings, sheet metal design, and surface design.

Topics covered in this Book

- Chapter 1, “Getting Started with Solid Edge ST8”, gives an introduction to Solid Edge. The user interface and terminology are discussed in this chapter.

- Chapter 2, “Sketch Techniques”, explores the sketching commands in Solid Edge. You will learn to create parametric sketches.

- Chapter 3, “Extrude and Revolve features”, teaches you to create basic 3D geometry using the Extrude and Revolve commands.

- Chapter 4, “Placed Features”, covers the features which can be created without using sketches.

- Chapter 5, “Patterned Geometry”, explores the commands to create patterned and mirrored geometry.

- Chapter 6, “Sweep Features”, covers the commands to create swept and helical features.

- Chapter 7, “Loft Features”, covers the Loft command and its core features.

- Chapter 8, “Additional Features and Multibody Parts”, covers additional commands to create complex geometry. In addition, the multibody parts are also covered.

- Chapter 9, “Modifying Parts”, explores the commands and techniques to modify the part geometry.

- Chapter 10, “Assemblies”, explains you to create assemblies using the bottom-up and top-down design approaches.

- Chapter 11, “Drawings”, covers how to create 2D drawings from 3D parts and assemblies.

- Chapter 12, “Sheet Metal Design”, covers how to create sheet metal parts and flat patterns.

- Chapter 13, “Surface Design”, covers how to create complex shapes and designs using surface modeling tools.
Chapter 1: Getting Started with Solid Edge ST8

Introduction to Solid Edge ST8
Solid Edge ST8 is a parametric and feature-based system that allows you to create 3D parts, assemblies, and 2D drawings. The design process in Solid Edge is shown below.

In Solid Edge, everything is controlled by parameters, dimensions, or relationships. For example, if you want to change the position of the hole shown in figure, you need to change the dimension or relation that controls its position.

The parameters and relationships that you set up allow you to have control over the design intent. The design intent describes the way your 3D model will behave when you apply dimensions and relationships to it. For example, if you want to position the hole at the center of the block, one way is to add dimensions between the hole and the adjacent edges. However, when you change the size of the block, the hole will not be at the center.

You can make the hole to be at the center, even if the size of the block changes. You need to apply the Horizontal/Vertical relationships between the hole and midpoints of the adjacent edges. Now, even if you change the size of the block, the hole will always remain at the center.
The other big advantage of Solid Edge is the associativity between parts, assemblies and drawings. When you make changes to the design of a part, the changes will take place in any assembly that it’s a part of. In addition, the 2D drawing will update automatically.

Installing Solid Edge ST8

To install Solid Edge ST8, click the autostart icon in the Solid Edge ST8 disc; the Solid Edge window appears. Click the Solid Edge link on the Solid Edge window; the Solid Edge Installation Wizard starts. On the Solid Edge ST8 window, type-in the User name and Organisation, and then select the Modeling standard. You can select a modeling standard, which your company or client uses. In this book, we use the ISO Metric modeling standard to create all parts, assemblies, and drawings. Click Install after selecting the modeling standard. Close the Solid Edge window after the installation is complete.
Starting Solid Edge ST8

To start Solid Edge ST8, click the Solid Edge ST8 icon on your computer screen; the Solid Edge message box pops up showing, “You copy of Solid Edge must be licensed for first-time us”. Click OK. Select your license option and specify the license code or file. Click OK after specifying the license; the theme selection window appears. A theme is a predefined user-interface layout, which suits your working style. This window displays four user-interface themes: Some Assistance, Maximum Assistance, Maximum Workspace, and Balanced (Solid Edge Default). Users who are familiar with other CAD packages can use the Some Assistance theme. Users who are new to CAD can use the Maximum Assistance theme. The Maximum Workspace theme is for users who have already used Solid Edge. The Balanced (Solid Edge Default) theme is the predefined workspace, which is similar to the previous versions of Solid Edge.

Select the Balanced (Solid Edge Default) theme and click OK. The Solid Edge ST8 application window appears. You can use this window to start a new document, open an existing one, start Solid Edge test drive (Hands-On tutorial), get help, learn about the user-interface, and get technical support. You can also add more links to the window. Click ISO Metric Part under the Create section to start a new part document.
You can change the templates displayed under the Create section by clicking Edit List. On the Template List Creation dialog, select a modeling standard from the Standard Templates section. You can change the order of the templates by selecting them from the Templates section and clicking the Move Up and Move Down arrows. Likewise, you can change the Name and Description of the template and click Apply. Click OK on the Template List Creation dialog to apply the changes.

File Types
Various file types that can be created in Solid Edge are given below.

- Part (.par)
- Assembly (.asm)
- Draft (.dft)
- Sheet Metal (.psm)
- Weldment (.pwd)

User Interface
The following image shows the Solid Edge ST8 application window.
Environments in Solid Edge
There are main five environments available in Solid Edge: **Part (Synchronous and Ordered)**, **Assembly**, **Draft**, **Weldment**, and **Sheet Metal (Synchronous and Ordered)**. In addition, there some additional environments to create exploded views, renderings, structures, piping, wire harnesses, and so on.

Part environment (Synchronous and Ordered)
This environment has all the commands to create a 3D part model. It is available in two modes: **Synchronous** and **Ordered**. The **Synchronous** mode allows you to create and edit models directly. The **Ordered** mode allows you to create History-based models. In this mode, every feature or sketch that you create is stored in the Pathfinder. You can always go back and edit the feature or sketch. It has a ribbon located at the top of the screen. The ribbon is arranged in a hierarchy of tabs, panels, and commands. Panels such as **Draw**, **Relate**, and **Dimension** consists of commands, which are grouped based on their usage. Panels in turn are grouped into various tabs. For example, the panels such as **Draw**, **Relate**, and **Dimension** are located in the **Home** tab.

Assembly environment
This environment is used to create assemblies. The **Home** tab of the Ribbon has various commands, which will allow you to assemble and modify the components.
Getting Started with Solid Edge ST8

The **Features** tab has commands, which will help you to create cutouts, holes and other features at the assembly level.

The **Inspect** tab helps you to inspect the assembly geometry.

The **Tools** tab has some advanced commands, which will help you to switch to other environments.

Draft environment

This environment has all the commands to generate 2D drawings of parts and assemblies.

Sheet Metal environment

This environment has commands to create sheet metal parts.

The other components of the user interface are discussed next.
Application Menu
The Application Menu appears when you click on the icon located at the top left corner of the window. The Application Menu consists of a list of self-explanatory menus. You can see a list of recently opened documents by clicking the Recent Documents menu.

Quick Access Toolbar
This is located at the top left corner of the window. It consists of commonly used commands such as New, Save, Open, Save As, and so on. You can add more commands to the Quick Access Toolbar by clicking on the down-arrow next to it, and then selecting commands from the pop-up menu.
Getting Started with Solid Edge ST8

Graphics Window
Graphics window is the blank space located below the ribbon. You can draw sketches and create 3D geometry in the Graphics window. The left corner of the graphics window has a Pathfinder. Using the Pathfinder, you can access the features of the 3D model.

Prompt Bar
Prompt Bar is located below the Graphics Window. It is useful when you activate a command. It displays various prompts while working with any command. These prompts are series of steps needed to create a feature successfully.

Status Bar
Status Bar is located at the bottom of the Solid Edge window. It contains many icons, which help you to visualize the 3D model. You can use the Record and Upload to Youtube icons to create and upload videos. To add more icons to the Status Bar, click the right mouse button on it and select options from the pop-up menu.
The **Command Finder** bar is used to search for any command available in Solid Edge ST8. You can type any keyword in the **Command Finder** bar and find a list of commands related to it.

Quick View Cube
It is located at the bottom right corner of the graphics window. It is used to set the view orientation of the model.
Getting Started with Solid Edge ST8

Command bar
When you activate any command in Solid Edge, a contextual productivity tool called the command bar pops up on the screen. It displays the options and steps to complete the execution of the command.

Changing the display of the Ribbon
You can add or remove more commands to the ribbon by clicking the right mouse button on it and selecting Customize the Ribbon. On the Customize dialog, click on the options in the right-side box, and then click Add or Remove. After making the required changes, close the dialog and click Yes to save the changes.
You can minimize the ribbon by clicking the right mouse button on the ribbon and selecting **Minimize the Ribbon**.

Dialogs
Dialogs are part of Solid Edge user interface. Using a dialog, you can easily specify many settings and options. Examples of dialogs are shown below.

Radial Menus
Radial Menus provide you with another way of activating commands. You can display Radial Menus by clicking the right mouse button and dragging the pointer. A Radial Menu has various commands arranged in a radial manner. You can add or remove commands to the Radial Menu by using the **Customize** dialog.
Shortcut Menus
Shortcut Menus are displayed when you right-click in the graphics window. Solid Edge provides various shortcut menus in order to help you access some options very easily and quickly. The options in shortcut menus vary based on the environment.

Starting a new document
You can start a new document directly from the initial screen or by using the New dialog. On the initial screen, click on the required option to start a part, assembly, drawing, weldment or sheet metal document.

The New dialog
To start a new document using the New dialog, click the New button on anyone of the following:

- Quick Access Toolbar
- Application Menu

The New dialog appears when you click the New button. In this dialog, select the standard from the Standard Templates section. The templates related to the selected standard will appear. Select the .asm, .dft, .par, or .psm to start an assembly, drafting, part, or sheetmetal file, respectively.

Solid Edge Options
You can customize Solid Edge as per your requirement. On the Application Menu, click Solid Edge Options to open the Solid Edge Options dialog. On this dialog, you can set options on each of the pages. The options on this dialog vary depending upon the environment that you are in.
View Overrides dialog
The View Overrides dialog helps you to change the background color, rendering, and light settings. On the ribbon, click View > Style > View Overrides to open this dialog. On this dialog, click the Background tab and set the Type to Solid. The background color changes to white.

Solid Edge Help
Solid Edge offers you with the help system that goes beyond basic command definition. You can access Solid Edge help by using any of the following methods:

- Press the F1 key.
- Click on the Solid Edge Help option on the right-side of the window.
Questions

1. Explain how to customize the Ribbon.
2. What is design intent?
3. Give one example of where you would establish a relationship between a part’s features.
4. Explain the term ‘associativity’ in Solid Edge.
5. List any two procedures to access Solid Edge Help.
6. How can you change the background color of the graphics window?
7. How can you activate the Radial Menu?
8. How is Solid Edge a parametric modeling application?
Chapter 2: Sketch Techniques

This chapter covers the methods and commands to create sketches in the part environment. The commands and methods are discussed in context to part environment. In Solid Edge, the part environment is divided into two separate modes: Synchronous and Ordered.

In Solid Edge, you create a rough sketches, and then apply dimensions and constrains that define its shape and size. The dimensions define the length, size, and angle of a sketch element, whereas constrains define the relations between sketch elements.

The topics covered in this chapter are:

- Create sketches in the Part environment (Synchronous and Ordered mode)
- Use relationships and dimensions to control the shape and size of a sketch
- Learn sketching commands
- Learn commands and options that help you to create sketches easily

Create Sketches in the Synchronous mode

Synchronous is the default mode activated in the Part environment. The process to create sketches in this mode is very simple. You need to select a sketch command, and then define a plane on which you want to create the sketch. The sketch commands are available in the Sketching or Home tab of the ribbon. To create a sketch, check the Base Reference Planes option under the PathFinder to display the Base Reference Planes. Next, select any of the sketch command (For example, the Line command) from Sketching > Draw panel and place the pointer on anyone of the Base Reference Planes. You will notice that a lock symbol appears on the plane. Click on the lock symbol (or) press F3 on your keyboard to lock the plane. You can now start drawing sketches on the locked plane. After creating the sketch, press the Esc key and click on the lock icon at the top right corner. The plane will be unlocked.

Create Sketches in the Ordered mode

Ordered mode was previously called as traditional environment. You can activate this mode by right-clicking and selecting Transition to Ordered or by selecting Tools > Model > Ordered on the ribbon.
Sketch Techniques

To create sketches, this mode offers a separate environment called the Sketching environment. To open this environment, select **Home > Sketch > Sketch** on the ribbon, and then click on a **Base Reference Plane** from the graphics window. You will notice that the **Line** command is activated, by default. You can start sketching lines or select any other sketching command. After completing the sketch, select **Home > Close > Close Sketch** on the ribbon. Next, enter the name of the sketch, and then click the **Finish** button on the **Sketch** command bar.

Draw Commands

Solid Edge provides you with a set of commands to create sketches. These commands are located on the **Draw** panel of the **Home** ribbon.
Sketch Techniques

The Line command
This is the most commonly used command while creating a sketch. To activate this command, you need to click Home > Draw > Line on the ribbon. As you move the pointer in the graphics window, you will notice that it is changed to a set of crosshairs. This indicates that the command is active. To create a line, click in the graphics window and move the pointer. You will notice that the length and angle dimensions are attached to the line. Type-in the length value and press Tab on your keyboard. Type-in the angle value and press Enter to create the line. This creates a line with the precise length and orientation. However, you can simply select points to create lines, and then apply dimensions. After creating the lines, you can press Esc to deactivate the Line command. You can also click Home > Select > Select on the ribbon to deactivate a command.

The Line command can also be used to draw arcs continuous with lines. Click the Arc icon from the command bar to draw this type of arc. The figure below shows the procedure to draw arcs connected to lines.

To delete a line, select it and press the Delete key. To select more than one line, press and hold the Ctrl key and then click on the line segments; the lines will be highlighted. You can also select multiple lines by dragging a box from left to right. Press and hold the left mouse button and drag a box from left to right; the lines inside or crossing the box boundary will be selected. Dragging a box from right to left will only select the lines that are inside the box.

Using Grid and Snap settings
If you are new to Solid Edge, the grid and snap settings will help you to create sketches easily. A grid is similar to a graph paper on your computer screen, whereas the snap mode forces the pointer to select the grid points. You can locate sketch points easily and accurately using the grid and snap settings. To use these settings, you need to activate the Show Grid and Snap to Grid icons on the Draw panel of the Sketching tab. Next, activate a drawing command and start drawing the sketch. You will notice that you can select the grid points easily. This makes it easy to create sketches.
Sketch Techniques

You can change the spacing between the grid points using the **Grid Options** dialog. Select **Sketching > Draw > Grid Options** on the ribbon to open this dialog. Next, modify the **Major line spacing value** to change the distance between the dark grid lines. Change the **Minor spaces per major** value to change the number of lighter grid lines between two major lines (dark lines). Examine the other options in this dialog. Most of them are self-explanatory.

Drawing a Symmetric Line
You can create a symmetric line using the **Line** command. Activate this command, press S, and click to define the midpoint of the line. Move the pointer and click to define the end point; a symmetric line is created about the specified midpoint.

The Tangent Arc command
This command creates an arc tangent to another entity. The working of this command is same as the **Arc** icon on the **Line** command bar. You have to select the endpoint of a line and create a tangent or normal arc.
Sketch Techniques

The Arc by 3 Points command
This command creates an arc by defining its start, end, and radius. Activate this command (click Home > Draw > Tangent Arc > Arc by 3 Points on the ribbon) and click to define the start point of the arc. Click again to define the endpoint. After defining the start and end of the arc, you have to define size and position of the arc. Move the pointer and click to define the radius and position of the arc (or) type-in the radius value in the dimension box attached to the pointer.

The Arc by Center Point command
This command creates an arc by defining its center, start and end points. Activate this command (click Home > Draw > Tangent Arc > Arc by Center Point on the ribbon) and click to define the center point. Next, move the pointer and you will notice that a line appears between center and the mouse pointer. This line is the radius of the arc. Now, click to define start point of the arc and move the pointer. You will notice that an arc is drawn from the start point. Now, type-in the radius value and press Tab. Type-in the arc angle and press Enter (or) simply move the pointer and click.

The Rectangle by Center command
This command creates a rectangle by defining its center and one corner point.
The Rectangle by 2 Points command
This command creates a rectangle by defining its diagonal corners.

The Rectangle by 3 Points command
This command creates an inclined rectangle. The first two points define the length and inclination angle of the rectangle. The third point defines its width.

The Polygon by Center command
This command provides a simple way to create a polygon with any number of sides. As soon as you activate this command, a command bar pops up. Now, click in the graphics window to define the center of the polygon. As you move the pointer away from the center, you will see a preview of the polygon. To change the number of sides of the polygon, just click in the Sides field on the command bar and type a new number. Next, press the ENTER key to update the preview. You will notice that there are two icons available on the command bar: By Vertex and By Midpoint. If you select the By Vertex icon, a vertex of the polygon will be attached to the pointer. If you select the By Midpoint icon, the pointer will be on one of the flat sides of the polygon. Next, click in the graphics window to define the size and angle of the polygon. You can also define the size and angle of the polygon by entering values
Sketch Techniques

in the **Distance** and **Angle** fields attached to the pointer. After creating a polygon, you will notice that a dashed circle is created touching its vertices. You can change the polygon size by changing the size of this circle.

The Circle by Center Point command
This command is the common way to draw a circle. Activate this command (click **Home > Draw > Circle by Center Point** on the ribbon) and click to locate the center of the circle. Next, move the pointer, and then click again to define the diameter of the circle. You can also enter the diameter or radius value of the circle on the command bar.

The Circle by 3 Points command
This command creates a circle by using three points. Activate this command and the select three points from the graphics window. You can also select existing points from the sketch geometry. The first two points define the location of the circle and the third point defines its diameter.

The Tangent Circle command
This command creates a circle by using two tangent points. Activate this command and select two lines, arcs, or circle; a circle will be drawn tangent to them.
Sketch Techniques

The Ellipse by Center Point command
This command creates an ellipse using a center point, and major and minor axes. Activate this command and click to define the center of the ellipse. As you move the pointer away from the center, you will notice that an axis is displayed. This can be either the major or the minor axis of the ellipse. When you click to place it, a preview of the ellipse appears and you can define the other axis. Note that you can also enter the radius and angle values of the axis. After defining the first axis, click to define the other axis (or) enter the axis radius; the ellipse will be drawn.

The Ellipse by 3 Points command
This command creates an ellipse by using three points. The first two points define the location and angle of the first axis of the ellipse. The third point defines the second axis of the ellipse.

The Curve command
This command creates a smooth B-spline curve along the selected points. B-Splines are non-uniform curves, which are used to create irregular shapes. You can select points or press the left mouse button and drag to create a curve.
You also use the **Close Curve** option to create a closed curve.

Press Esc to deactivate this command, and then select the curve; you will notice that control vertices are displayed on the curve. Click and drag the control vertices to edit the curve shape. You can use the **Add/Remove points** option on the command bar to add more points or remove points from the curve.

The Smart Dimension command

It is generally considered a good practice to ensure that every sketch you create is fully-constrained before moving on to create features. The term, ‘fully-constrained’ means that the sketch has a definite shape and size. You can fully-constrain a sketch by using dimensions and relations. You can add dimensions to a sketch by using the **Smart Dimension** command. You can use this command to add all types of dimensions such as length, angle, and diameter and so on. This command creates a dimension based on the geometry you select. For instance, to dimension a circle, activate the **Smart Dimension** command, and then click on the circle. Next, move the pointer and click again to position the dimension; you will notice that a box pops up. You can type-in a value in this box, and then press Enter to update the dimension.
Sketch Techniques

If you click a line, this command automatically creates a linear dimension. Click once more to position the dimension, and then type-in a value and press Enter; the dimension will be updated.

You can use the Angle option on the Smart Dimension command bar to add an angle dimension.

The Distance Between command
This command creates a linear dimension between two points. Activate this command and select the Horizontal/Vertical option on the command bar. Select the endpoints of a line and move the pointer to establish a vertical or horizontal dimension.
If you want the true length of the line, select the **By 2 Points** option on the command bar. Next, select the end points of a line, and move the pointer and position the dimension. Type-in a value in the box and press Enter to update the dimension.

The Angle Between command
This command creates an angle dimension between two selected elements. Activate this command and select the elements positioned at an angle with each other. Next, move the pointer and position the dimension. Type-in a value and press Enter to update angle.

Driving Vs Driven dimensions
When creating sketches for a part, Solid Edge will not allow you to over-constrain the geometry. The term ‘over-constrain’ means adding more dimensions than required. The following figure shows a fully constrained sketch. If
you add another dimension to this sketch (e.g. diagonal dimension), it appears in blue color. This type of dimension is a driven dimension. You cannot double-click and edit this dimension because it is redundant.

Existing driving dimensions (dimensions in red color) already define the sketch geometry. Driving dimensions are so named because they drive the geometry of the sketch. Double-clicking one of the driving dimensions and changing the value will change the geometry of the sketch. For example, if you change the value of the width, the driven dimension along the diagonal updates, automatically. Also, note that the dimensions, which are initially created, will be driving dimensions, whereas the dimensions created after fully defining the sketch are driven dimensions.

IntelliSketch Auto-Dimensions

Solid Edge provides you with an option to create dimensions, automatically. You can do it using the IntelliSketch dialog. Click Sketching > IntelliSketch > IntelliSketch Options to activate this dialog. On this dialog, select the Auto-Dimension tab, and then select the Automatically create dimensions for new geometry option.
In addition, there are other options on the IntelliSketch dialog to define the conditions to create automatic dimensions. These options are self-explanatory. Click OK after defining the settings in this dialog.

Geometric Relations

Geometric Relations are used to control the shape of a sketch by establishing relationships between the sketch elements. The geometric relations are available on the Relate panel of the Home tab and are explained next.

Connect

This relation connects a point to another point or element. Activate this button, and then select two points; the selected points will be connected.

Parallel

This relation makes two lines parallel to each other. Activate this button, and then select two lines from the sketch; the first line is made parallel to the second line.

Concentric

This relation makes the center points of arcs, circles or ellipses coincident. Activate this button and select a circle or
Sketch Techniques

arc from the sketch. Select another circle or arc. The first circle/arc will be concentric with the second circle/arc.

Lock
This relation locks a sketch element or dimension so that it cannot be moved or modified. Activate this button and select an element or dimension; it will be locked at its current position. In addition, you cannot change the shape and size of the element.

Horizontal/Vertical
This relation makes a line horizontal or vertical. The lines positioned at an angle below 45-degrees will be made horizontal. The lines positioned at an angle above 45-degrees will be made vertical. You can also make two points horizontally or vertically aligned with each other.

Equal
This relation makes the selected objects equal in magnitude. For example, if you select two circles, the diameter of the selected circles will become equal. If you select two lines, the length of the two lines will be equal.
Sketch Techniques

Perpendicular
This relation makes two lines perpendicular to each other. Activate this button and select two lines from the sketch. The first line will be made perpendicular to the second line.

Rigid Set
This relation makes the selected objects act as a single unit. Activate this button and select two or more objects from the sketch. Click the green check on the command bar. The selected objects will be made into a rigid set.

Now, click and drag anyone of the object from the rigid set. You will notice that entire set will be dragged.
Sketch Techniques

Tangent
This relation makes an arc, circle, or line tangent to another arc or circle. Activate this button and select a circle, arc, or line. Select another circle, arc, or line. The first object will be tangent to the second object.

You can also make a curve continuous with another curve or arc using the **Tangent** relation.
Sketch Techniques

Symmetric
This relation makes two objects symmetric about a line. The objects will have same size, position and orientation about a line. For example, if you select two circles about a line, they will become equal in size, aligned horizontally, and positioned at an equal distance from the line. Activate the Symmetric button and select the symmetry line. Select two objects from the sketch. They will be made symmetric about the selected line.

Collinear
This relation forces a line to be collinear to another line. The lines are not required to touch each other.

Maintain Relationships
Relations can also be applied automatically by activating the Maintain Relationships command. Activate or deactivate Maintain Relationships by picking the Maintain Relationships button on the Relate panel. With this command on, relations are applied automatically when the sketch elements are created. You can define which relations to apply automatically by using the IntelliSketch Options dialog. Click Sketching > IntelliSketch > IntelliSketch Options, and then select the Relationships tab on the IntelliSketch Options dialog. In this tab, select the relations to be created while sketching elements, and then click OK.
Relationship Handles
As relations are created, they can be viewed using the **Relationship Handles** button located on the **Relate** panel. When dealing with complicated sketches involving numerous relations, you can deactivate this button to turn off all relationship handles.

Relationship Assistant
In addition to the **Smart Dimension** command and other geometric relations, Solid Edge provides you with the **Relationship Assistant** command. This command automatically applies relations and dimensions to fully-constrain a sketch. To activate this command, click **Home > Relate > Relationship Assistant** on the ribbon. A command bar pops up. Select the **Options** icon on the command bar to open the **Relationship Assistant** dialog. On this dialog, click the **Geometry** tab, and then select the relations to be applied. Similarly, click the **Dimension** tab and select the dimensions to be applied. You can also select the **Dimension Scheme** such as **Stack**, **Chain**, and **Coordinate**. Click **OK** on the **Relationship Assistant** dialog and select the objects to apply relations and dimensions. Next, click the green check on the command bar and then select the horizontal and vertical dimension origins. The relations and dimensions will be created, automatically.
The Construction command
This command converts a sketch element into a construction element. Construction elements are reference elements, which support you to create a sketch of desired shape and size. Activate the Construction command from the Draw panel and click on a sketch element. The selected element will be converted to a construction element. You can also convert back the construction element to a sketch element by activating the Construction command and clicking on the element.

The Symmetric Diameter command
This command is very useful while creating a sketch for a revolved feature. It creates a dimension by measuring the distance between two lines or points, and then multiplying it by two. Activate this command from the Dimension panel, and then select the dimension origin. You need to ensure that the dimension origin is locked at its location. Now, select the line up to which the dimension is to be created. Click to position the dimension, and then change the value.
Sketch Techniques

The Fillet command
This command rounds a sharp corner created by intersection of two lines, arcs, circles, and rectangle or polygon vertices. Activate this command from the Draw panel and select the elements’ ends to be filleted. Type-in a radius value in the Radius box of the command bar and press Enter. The elements to be filleted are not required to form an intersection.

You can also drag the pointer across the elements to fillet the corner.

By default, the elements are automatically trimmed or extended to meet the end of the new fillet radius. You can use the No Trim option on the command bar, if you do not want to trim or extend the elements as necessary.
Sketch Techniques

The Chamfer command
This command replaces a sharp corner with an angled line. Activate this command from the Fillet drop-down on the Draw panel and select the elements’ ends to be chamfered. Type-in the chamfer angle in the Angle box on the command bar and press Enter. Next, move the pointer and click to create the chamfer. Instead, you can also use the Setback A and Setback B boxes on the command bar to define the chamfer size.

The Split command
This command splits an element into two elements. Activate this command from the Draw panel and click the element to split. Next, select a split point on the element. In case of a circle or ellipse, you must select two split points.
The Extend to Next command
This command extends elements such as lines, arcs, and curves until they intersect another element called a boundary edge. Activate this command from the Split drop-down on the Draw panel and click on the element to extend. It will extend up to the next element.

The Trim command
This command trims the end of an element back to the intersection of another element. Activate this command from the Draw panel and select the element or elements to trim. You can also drag the pointer across the elements to trim.
Sketch Techniques

The Trim Corner command
This command trims and extends elements to form a corner. Activate this command from the Draw panel and select two intersecting elements. The elements will be trimmed and extended to form a closed corner.

The Offset command
This command creates a parallel copy of a selected element or chain of elements. Activate this command from the Draw panel and select an element or chain of elements to offset. You can use the Single or Chain option from the Select drop-down on the command bar to select a single element or chain of elements. After selecting the element, type-in a value in the Distance field on the command bar and click the green check. Click to define the side of the offset. The parallel copy of the elements will be created and you can click again to create another parallel copy. Click the right mouse button after creating parallel copies. Press Esc to deactivate this command.
The Symmetric Offset command

This command creates a parallel copy on both sides of a selected element or chain of elements. It is helpful while creating a sketch slot. Activate this command from the Offset drop-down on the Draw panel. The Symmetric Offset Options dialog pops up on the screen.

The options on this dialog are explained below. Set the required options on the dialog and click OK. Next, select an open sketch and click the green check to create the symmetric offset.
Sketch Techniques

The Move command
This command relocates one or more elements from one position in the sketch to any other position you specify. Activate this command from the Draw panel, and then click on the elements to move. Next, you must select a base point and click at a new location.

The Copy option on the Move command bar can be used to copy and move the selected elements.

The Rotate command
This command rotates the selected elements to any position. Activate this command from the Move drop-down of the Draw panel, and then select the elements to rotate. Next, you must define a base point and a point from which the object will be rotated. Move the pointer and click to define the rotation angle. You can use the Copy option on the command bar to copy and rotate the selected elements.

The Mirror command
This command creates a mirror image of the selected elements. You have the option to retain or delete the original elements. Activate this command from the Draw panel, and then select the elements to mirror. Next, you have to create two points defining the mirror-line. To retain the original elements, you must ensure that the Copy option is active on the command bar.
Sketch Techniques

The Scale command
This command increases or decreases the size of elements in a sketch. Activate this command from the Mirror drop-down of Draw panel, and then select the elements to scale. After selecting the elements, you must select a base point. You can then scale the size of the selected elements by moving the pointer or entering a scale value in the Scale field on the command bar.

The Stretch command
This command moves a portion of the sketch while still preserving other parts of it. Activate this command from the Mirror drop-down on the Draw panel, and then drag a box to select the elements to be stretched. Select a base point and move the pointer to stretch the selected elements.

3D Sketching
3D Sketching in Solid Edge helps you to design things like piping, tubing, weldments, and so on. You can create a 3D sketch by using the commands available in the 3D Sketching tab. To start a 3D sketch in the Synchronous mode, click 3D Sketching > New Sketch > New 3D Sketch on the ribbon. The 3D Sketches entry is listed in the Pathfinder. Now, you can create a 3D sketch using the commands available on the 3D Draw panel. Most of the commands are similar to the 2D Draw commands.
Creating a 3D Line
The 3D Line command is similar to the Line command except that it creates a chain of lines from selected points in the 3D space. You can create 3D lines without selecting any plane. Activate this command by clicking the 3D Line button on the 3D Draw panel. You will notice that the pointer is turned into a 3D crosshair. In addition, a triad appears in the graphics window. Now, you can create 3D lines by clicking in the graphics window. For example, select the origin point of the Base Coordinate system to define the start point of the line. Move the pointer vertically upward and you will notice that a parallel symbol appears on the line. In addition, the Z-axis of the triad is highlighted in orange. This means that the line is drawn parallel to the Z-axis. Click to define the endpoint of the line.

Now, move the pointer along the red line of the crosshairs. You will notice that the line is drawn parallel to the X-axis. Click to define the endpoint of the line.

Move the pointer along the green line of the crosshairs. This draws a line parallel to the Y-axis. Click to define the endpoint of the line.
Likewise, create some more lines in the Z, X, and Y-axes. Press Esc to deactivate the 3D Line command. When you rotate the view, you can see the 3D Line created.

Adding Relationships and Dimensions
Adding Relationships in 3D Sketching is similar to that in 2D sketching except that there are two additional commands: On Plane and Coaxial. The On Plane command moves the selected sketch element onto a plane. Click the On Plane button on the 3D Relate panel. Select the 3D sketch element and the plane. The selected sketch element will move to the selected plane.
Sketch Techniques

The Coaxial command makes the center of circle coaxial with a line. Click the Coaxial button on the 3D Relate panel and select an arc or circle. After selecting the first element, select the second element.

Use the Smart Dimension command to apply dimensions to the 3D sketch. Activate this command and select the sketch element. However, if you select the endpoints of two elements, the dimension will be displayed aligned to them. Press N on your keyboard to change the orientation of the dimension.

Drawing a 3D Sketch element by Locking a plane
To create 3D sketch by locking a plane, you can use the default planes or create new planes. For this example, you will create a new plane and use it to draw a 3D sketch. On the ribbon, click 3D Sketching > Planes > Coincident Plane, and then select the XZ plane from the Base coordinate system. You will notice the steering wheel on the new plane. Click on the torus of the steering wheel and move the pointer. Type-in 135 and press Enter. The plane will be rotated by 135 degrees.
Click the **3D Line** button on the **3D Draw** panel. On the command bar, click the **Lock Sketch Plane** icon and select the plane. Select the origin point of the Base coordinate system to define the start point. Move the pointer upward, and then type-in 50 and -90 in the Length and Angle boxes, respectively and press Enter. Move the pointer along the horizontal crosshair and enter 50 and 0 in the length box and angle boxes, respectively. Likewise, create another vertically inclined line of 50 mm length. Press F3 to unlock the plane.

Now, move the pointer along the green line of the crosshairs, type 100 in the length box, and press Enter. Complete the sketch by creating other lines, as shown below. Press Esc to deactivate the command.

To add fillets to the sketch, click **3D Fillet** button on the **3D Draw** panel. Type-in a value in the radius box and press Enter. Select the corners of the sketch to fillet them.

In the Ordered Environment, you have to open the 3D Sketching environment to create a 3D sketch. On the ribbon, click **Home > Sketch > 3D Sketch**. Use the drawing commands and create the 3D sketching. Click the **Close 3D Sketch** button after completing the sketch.
Sketch Techniques

Examples

Example 1 (Millimetres)
In this example, you will draw the sketch shown below.

1. Start Solid Edge ST8 by clicking the Solid Edge ST8 icon on your desktop.
2. On the initial screen, click ISO Metric Part; a new part file is opened.

3. To start a new sketch, click Home > Draw > Line on the ribbon. The pointer turns into a crosshair.
4. Place the mouse pointer on the coordinate system; the XZ plane is highlighted.
5. Click the lock icon on the XZ plane (or) press F3 to lock the plane.
6. Click the Sketch View icon located at the bottom of the window; this orients the sketch plane normal to the screen.
7. Click on the origin point to define the first point of the line.
8. Move the pointer along the horizontal line of the crosshair and toward right.
Sketch Techniques

9. Click to define the endpoint of the line.
10. Move the pointer along the vertical line of the crosshair and upwards. Click to define the second line.
11. Create a closed loop by selecting points in the sequence, as shown below.

12. Click **Home > Relate > Collinear** on the ribbon and click on the two horizontal lines at the bottom; they become collinear.

13. Click **Home > Relate > Equal** on the ribbon and click on the two horizontal lines at the bottom; they become equal in length.
14. Select the small vertical lines to make their lengths equal.

15. Click **Home > Dimension > Smart Dimension** on the ribbon and click on the lower left horizontal line. Move the mouse pointer downward and click to locate the dimension.

16. Type-in **20** in the dimension box and press Enter.

17. Click on the small vertical line located at the left side. Move the mouse pointer towards right and click to position the dimension.

18. Type-in **25** in the dimension box and press Enter.

19. Create other dimensions in the sequence, shown below. Press Esc to deactivate the **Smart Dimension** command.
Sketch Techniques

20. Click on the portion between the dimension value and the arrow. Press the left mouse button and drag the dimension near to the sketch.

21. Likewise, arrange the other dimensions.
22. On the ribbon, click Home > Draw > Circle by Center Point. Click inside the sketch region to define the center point of the circle. Move the mouse pointer and click to define the diameter. Likewise, create another circle.

23. On the ribbon, click Home > Relate > Horizontal/Vertical. Click on the center points of the two circles to make them horizontally aligned.

24. On the ribbon, click Home > Relate > Equal, and then click on the two circles. The diameters of the circles will become equal.
25. Activate the **Smart Dimension** command and click on anyone of the circles. Move the mouse pointer and click to position the dimension. Type 25 in the dimension box and press Enter.

26. Create other dimensions between the circles and the adjacent lines, as shown below.

27. Click the Lock icon on the right-side of the graphics window to unlock the sketch plane.

28. Click the **Save** icon on the **Quick Access Toolbar**. Define the location and file name and click **Save** to save the part file.

29. Click **Close Window** on the top right corner to close the part file.
Sketch Techniques

Example 2 (Inches)
In this example, you will draw the sketch shown below.

1. Start Solid Edge ST8 by clicking the Solid Edge ST8 icon on your desktop.
2. On the Quick Access Toolbar, click the New icon; the New dialog is opened.
3. On the New dialog, click Standard Templates > ANSI Inch and select the ansi inch part.par template. Click OK to start a new part file.
4. To start a new sketch, click Home > Draw > Line on the ribbon.
Sketch Techniques

5. Place the mouse pointer on the coordinate system; the XZ plane is highlighted and a mouse icon appears.
6. Click the right mouse button to display the **QuickPick** box.
7. On the **QuickPick** box select the XY plane.

8. On your keyboard, press the F3 key to lock the sketch plane.
9. Click the **Sketch View** icon located at the bottom of the window. This orients the sketch plane normal to the screen.
10. Click on the origin point to define the first point of the line. Move the mouse pointer horizontally and click to draw a line.

11. On the **Line** command bar, click the **Arc** icon.
12. Take the mouse pointer to the end point of the line and click.
13. Move it upwards right click to create the arc.

14. Again, click the **Arc** icon the command bar.
15. Move it upwards right.
16. Move the pointer toward left and click when a vertical dotted line appears, as shown below.
17. Move the mouse pointer toward left and click to create a horizontal line. Note that the length of the new line should be greater than that of the lower horizontal line.
18. Click the **Arc** icon on the command bar and move it downward left.
19. Move the pointer toward right and click when a vertical dotted line appears, as shown below.

20. Click the **Arc** icon on the command bar. Move the mouse pointer toward downward right and click on the origin to close the sketch.

21. Click the right mouse button to end the chain.
22. Click on the midpoint of the lower horizontal line. Move the mouse pointer vertically up and click to create a vertical line.
23. On the ribbon, click **Home > Draw > Construction**. Click on the vertical line located at the center. The line is converted into a construction element.

24. Activate the **Circle by Center Point** command and draw a circle on the right side of the construction line.

25. On the ribbon, click **Home > Relate > Concentric**. Click on the circle and the small arc on the right side. The circle and arc are made concentric.

26. Likewise, create another circle concentric to the small arc located on the left side of the construction line.

27. On the ribbon, click **Home > Relate > Symmetric**. Click on the construction line located at the center. The line will act as a symmetry line.

28. Click on the large arcs on both sides of the symmetry line. The arcs are made symmetric about the construction line.

29. Likewise, make the small arcs and circles symmetric about the construction line.
30. Activate the **Smart Dimension** command and apply dimensions to the sketch in the sequence, as shown below.

31. On the status bar, click the **Fit** icon to fit the drawing in the graphics window.

32. To save the file, click **Application Menu > Save**. Define the location and file name and click **Save**; the part file is saved.

33. To close the file, click **Application Menu > Close**.

Example 3 (Millimetres)

In this example, you will draw the sketch shown below.
1. Start **Solid Edge ST8** by clicking the **Solid Edge ST8** icon on your desktop.
2. To start a new part file click **Application Menu > New > ISO Metric Part.**

3. To start sketching, activate the **Line** command and click on the XZ plane. Press F3 to lock the sketch plane.
4. Click the **Sketch View** icon located at the bottom of the window. This orients the sketch plane normal to the screen.
5. Place the mouse pointer on the origin and move it toward left; a dotted line appears.

6. Click to define the first point. Move the mouse pointer horizontally toward right and click to define the second point.
7. Create a closed loop by clicking points in the sequence shown below.
8. Click **Home > Relate > Symmetric** on the ribbon. Click on the Z-axis to define the symmetric axis.
9. Click on the small vertical lines to make them symmetric.
10. Click on the other vertical lines to make them symmetric.

11. On the ribbon, click **Home > Relate > Collinear**. Click on the lower horizontal line and the X-axis to make them collinear.
12. Activate the **Smart Dimension** command and apply dimensions in the sequence shown below.
Sketch Techniques

13. Click **Home > Draw > Rectangle by Center** on the ribbon. Click in the sketch region to define the center of the rectangle.

14. Move the mouse pointer toward top right and click to define the corner of the rectangle.

15. Activate the **Line** command and draw a horizontal line inside the loop.

16. Activate the **Smart Dimension** command and apply dimensions in the sequence shown below.
Sketch Techniques

17. Click Home > Draw > Offset > Symmetric Offset on the ribbon; the Symmetric Offset Options dialog pops up.

18. On this dialog, type in 20 in the Width box and select the Offset Arc option. Click OK to close the dialog.

19. Select the horizontal line and click the green check on the command bar.

20. Click Home > Draw > Fillet on the ribbon. Type in 6 in the Radius box on the command bar and press Enter.

21. Create fillets by clicking on corners of the sketch.
Sketch Techniques

22. Save and close the file.

Questions
1. What is the procedure to create sketches in Synchronous mode?
2. List any two sketch Relationships in Solid Edge.
3. Which command orients the sketch normal to the screen?
4. What is the procedure to create sketches in Ordered mode?
5. Which command allows you to apply dimensions to a sketch automatically?
6. Describe the two methods to create ellipses.
7. How do you define the shape and size of a sketch?
8. How do you create a tangent arc using the Line command?
9. Which command is used to apply multiple types of dimensions to a sketch?
10. List any two commands to create circles?

Exercises
Exercise 1

![Exercise 1 Diagram]

Exercise 2

![Exercise 2 Diagram]
Exercise 3
Sketch Techniques
Chapter 3: Extrude and Revolve Features

This chapter covers the methods and commands to create extruded and revolved features.

The topics covered in this chapter are:

- Constructing Extrude and Revolve features in the Part environment (Synchronous and Ordered mode)
- Creating Reference Planes
- Additional Options in the Extrude and Revolve commands

Extrude Features (Synchronous)

Extrude is the process of taking a two-dimensional profile and converting it into 3D by giving it some thickness. A simple example of this would be taking a circle and converting it into a cylinder. Once you have created a sketch profile or profiles you want to Extrude, click inside the sketch to display a two-sided arrow. Click the arrow and move the pointer. You will notice that a thickness is added to the sketch profile. Use the Symmetric option on the command bar, if you want to add thickness to both sides of the sketch. Next, type-in a value in the box that appears on the extrusion, and then press Enter to create the Extrude feature.

Extrude Features (Ordered)

The process of creating Extrude features in the Ordered mode is similar to Synchronous, but it includes few additional steps. Activate the Extrude command from the Solids panel on the Home tab of the ribbon. The Extrude command bar pops up on the screen. Select the Select from Sketch and Chain options on the command bar. Click on the sketch profile and click the green check on the command bar. Move the pointer upward or downward to add thickness to the sketch profile. Next, type-in a value in the Distance box on the command bar and press Enter to create the Extrude feature.
Use the **Symmetric Extent** option on the command bar to add equal thickness on both sides of the sketch. Use the **Non-Symmetric Extent** option to add separate thickness on either sides of the sketch profile.

Revolve Features (Synchronous)

Revolve is the process of taking a two-dimensional profile and revolving it about a centerline to create a 3D geometry (shapes that are axially symmetric). While creating a sketch for the *Revolve* feature, it is important to think about the cross-sectional shape that will define the 3D geometry once it’s revolved about an axis. For instance, the following geometry has a hole in the center. This could be created with a separate *Cut* or *Hole* feature. But in order to make that hole part of the *Revolve* feature, you need to sketch the axis of revolution so that it leaves a space between the profile and the axis.
Extrude and Revolve Features

After completing the sketch, click inside the sketch region. The Extrude Handle appears on the sketch region. Activate the Revolve command from the command bar (click the down arrow next to the Extrude icon and select Revolve). You will notice that the Extrude Handle is changed to Revolve Handle (a two-sided arrow with a torus and spear in the middle). Click the spear on the Revolve Handle, and drag and place it on the axis of revolution. Click the torus on the Revolve Handle and move the pointer to revolve the sketch. Type-in an angle value and press Enter to create the Revolve feature. Select Finite > 360 on the command bar to revolve the sketch up to 360 degrees.

Revolve Features (Ordered)

The process of creating the Revolve feature in the Ordered mode is little bit different from Synchronous. First, you must activate the Revolve command (click Home > Solids > Revolve on the ribbon), and then select the sketching plane. Next, draw the cross-section and axis of revolution. Click Home > Draw > Axis of Revolution on the ribbon and select a line to define the axis of revolution. Close the sketch and type-in a value in the Angle field on the command bar (or) click the Revolve 360 icon on the command bar to revolve up to 360 degrees. Next, click Finish to create the Revolve feature. Click Cancel to deactivate this command.
Primitive Shapes (Synchronous only)
Solid Edge ST8 provides you with commands to create primitive shapes such as boxes, cylinders, and shapes. These commands are available in the Synchronous mode only.

Box
This command creates a box by using a rectangular sketch. You can create rectangles by using three options: by Center, by 2 points, and by 3 points. These options are discussed earlier in Chapter 2 in the Rectangles section.

Activate this command (on the ribbon, click Home > Solids > Primitives drop-down \(\square\) > Box) and set the Selection Type on the command bar. For example, set the Selection type to by Center and select a plane. Click to define the center point of the rectangle. Move the pointer and click to define the corner point (or) type-in values in the length, width, and angle dimensions box by pressing the Tab key. Move the pointer and click (or) type-in the extrusion depth and press Enter.

Cylinder
Creating a cylinder is similar to that of a box. Activate the Cylinder command (on the ribbon, click Home > Solids > Primitives drop-down > Cylinder) and select a plane. Click to define the center point of the cylinder. Next, define the extrusion depth by entering a value (or) by moving the pointer and clicking.

Sphere
This command creates a sphere by defining the center and radius. Activate the Sphere command (on the ribbon, click Home > Solids > Primitives drop-down > Sphere) and click to define the center point of the sphere. You can also select a plane and define a point on it. Next, define the radius by entering a value (or) moving the pointer and clicking.

Creating Planes (Synchronous)
Each time you start a new part file, Solid Edge automatically creates default reference planes (Base Reference Planes) along with the default coordinate system. Planes and coordinate system make up a specific type of features in Solid Edge, known as Reference features. These features act as supports to your 3D geometry. In addition to the default reference features, you can create your own additional planes and coordinate systems too. Until now, you have known to create sketches on any of the default reference planes. If you want to create sketches and geometry at locations other than default reference planes, you can create new reference planes manually. You can do so by using the commands available in the Planes panel of the Home tab.

Coincident Plane
This command creates a reference plane, which is coincident with a selected face or plane. Activate this command (click Home > Planes > Coincident Plane on the ribbon) and click on a face or plane. A plane coincident with the selected face will be placed. In addition, the Steering Wheel tool appears on the plane.
Click on any of the arrows of the *Steering Wheel* tool and drag the pointer to change the location of the plane.

Click the torus of the *Steering Wheel* tool and drag the pointer to rotate the plane.

Normal to Curve
This command creates a reference plane, which will be normal (perpendicular) to a line, curve, or edge. Activate this command (click Home > Planes > More Planes > Normal to Curve on the ribbon), and then select an edge, line, curve, arc, or circle. Drag the pointer and click on a point to define the location of the plane (or) type-in a value in the **Position** box (or) type-in a distance value in the **Distance** box and press Enter.
Extrude and Revolve Features

By 3 Points
This command creates a reference plane passing through three points. Activate this command (click Home > Planes > More Planes > By 3 Points on the ribbon), and then select three points from the model geometry. A plane will be placed passing through these points.

Tangent
This command creates a plane tangent to a curved face. Activate this command (click Home > Planes > More Planes > Tangent on the ribbon) and select a curved face. A plane tangent to the selected face appears. Drag the pointer and click to define the position of the tangent plane (or) type-in an angle value and press Enter.

Coordinate System
This command creates a new coordinate system in addition to the default one. Activate this command (click Home > Planes > Coordinate System on the ribbon) and position the pointer on a point or face or line. Use the orientation
Extrude and Revolve Features

keys, if you want to change the orientation of the coordinate system. For example, press F to flip the coordinate system about the z-axis. Press T to flip it about the x-axis. Press G to return to the default orientation. After orienting the coordinate system, click to define its location.

Creating Planes (Ordered)
The Ordered mode offers some additional methods to create reference planes.

Parallel
This command creates a reference plane, which will be parallel to a face or another plane. Activate this command (click Home > Planes > More Planes > Parallel on the ribbon) and select a flat face or plane. Drag the pointer and click to define the location of the plane (or) type-in a value in the Distance box on the command bar and press Enter.

Angled
This command creates a plane, which will be positioned at an angle to a face or plane. Activate this command (click Home > Planes > More Planes > Angled on the ribbon) and select a flat face or plane. Next, select another face, which acts as a base reference. Select a point to define the orientation of the plane, and then type-in a value in the Angle box on the command bar.
Extrude and Revolve Features

Perpendicular
This command creates a plane, which will be perpendicular to a face or plane. Activate this command (click **Home > Planes > More Planes > Perpendicular** on the ribbon) and select a flat face or plane. Next, select another face which acts as a base reference. Select a point to define the origin of the plane, and then click to specify the side of the plane.

Coincident by Axis
This command creates a plane, which is coincident with a selected face or plane. Activate this command (click **Home > Planes > More Planes > Coincident by Axis** on the ribbon) and select a flat face or plane. Next, select a part edge to define the x-axis of the plane, and then select a point to define the x-axis origin.

Additional options of the Extrude command
The **Extrude** command has some additional options to create a 3D geometry, complex features, and so on. These options are inactive by default and are activated after you have created the first feature of the part.
Selection Type options
The Selection Type drop-down menu on the command bar has three options: Single, Chain, and Face. The Single option selects the individual elements of a sketch, whereas the Chain option selects the complete loop. The Face option selects the region enclosed by the sketch.

Include Internal Loops
This option is useful while working with a sketch having internal loops. If you select this option, the internal loops of the sketch will be detected while creating the Extrude feature.

Exclude Internal Loops
This option ignores the internal loops of a sketch.

Use Only Internal Loops
This option considers only the internal loops of the sketch.
Extrude and Revolve Features

Add
This option adds material to the geometry.

Cut
This option removes material from the part geometry.

Automatic
This option adds or removes material based on the extrusion direction.

Open
This option extrudes an open sketch without using the adjacent edges.

Closed
Converts an open sketch into a closed one by using the adjacent edges, and then extrudes the sketch.
Side Step
This option defines the side of the sketch to extrude. On the command bar, set the **Selection Type** to **Chain** and select an open sketch. Right click to accept the sketch. Use the arrow that appears on the selected sketch to define the side of the sketch to be extruded. Move the pointer to extrude the sketch. You can click the **Side Step** button to change the side to be extruded.

Extent Type options
The **Extent Type** drop-down menu on the command bar has four options: **Finite**, **Through All**, **Through Next**, and **From-To**. The **Finite** option extrudes the sketch up to the distance that you specify. The **Through All** option extrudes the sketch throughout the 3D geometry.

The **Through Next** option extrudes the sketch through the face next to the sketch plane.
The From-To option extrudes the sketch from the sketch plane to a selected face.

Treatments options
The Treatments drop-down menu on the command bar has three options: No Treatment, Draft, and Crown. The No Treatment option creates the Extrude feature without any treatment. The Draft option applies draft to the Extrude feature. Activate this option and type-in a draft angle value in the Draft Parameters dialog. Click the Flip button next to the Angle 1 box to flip the draft angle. Click OK on the Draft Parameters dialog and define the Extrude distance. If you activate the Symmetric option on the command bar, you can define draft in the second direction as well.
The Crown option in the Treatments drop-down menu adds a crown to the Extrude feature. As you activate this option, the Crown Parameters dialog appears. Type-in a value in the Radius box and click OK. Drag the pointer and click to define the thickness of the Extrude feature.

Applying Material to the Model
Solid Edge allows you to apply a material to the model easily. To apply material to the geometry, double-click the Material option under the PathFinder tree. On the Solid Edge Material Table dialog, expand the Material tree and select a material. The Material Properties of the selected material appear. Click the Apply to Model button. The selected material will be applied to the model. If you want to remove the material, right-click on the Material option under PathFinder and select Remove Material.

Examples
Example 1 (Millimetres)
In this example, you will create the part shown below.
Extrude and Revolve Features

1. Start Solid Edge ST8.
2. On the initial screen, click ISO Metric Part; a new part file is opened.
3. On the ribbon, click Home > Draw > Rectangle by Center > Rectangle by 2 Points.
4. Place the mouse pointer on the coordinate system; the XZ plane gets highlighted.
5. Click the lock icon on the XZ plane to lock the plane.
6. Click the origin point to define the first corner of the rectangle.
7. Move the mouse pointer toward top right corner and click to define the second corner.
8. Use the Smart Dimension command and apply dimensions to the rectangle.
9. Click the lock icon on the screen to unlock the sketch plane. Press Esc to deactivate the Smart Dimension command.
10. Click inside the rectangle to display a two-sided arrow. In addition, a command bar pops up.
11. On the command bar, activate the Symmetric icon. Click the arrow on the sketch.
12. Type-in 65 in the box that appears on the model and press Enter.

13. Activate the **Line** command and place the mouse pointer on the front face of the part geometry.
14. Click the lock icon to lock the sketching plane.
15. Click **Sketch View** on the status bar.
16. Draw the sketch and apply dimensions to it. Unlock the sketch plane.

17. On the status bar, click **View Orientation > Dimetric View**; the model orientation is changed to dimetric.
18. On the ribbon, click **Home > Select > Select** and click inside the region enclosed by the sketch.
19. On the command bar, click **Extent Type > Through All**.
20. Click on the arrow pointing toward the part geometry.
21. Move the mouse pointer toward the part geometry and click to create the extruded cut.
Extrude and Revolve Features

22. Click Home > Draw > Line on the ribbon. Place the pointer on the top face of the part geometry and click the lock icon.
23. Draw the sketch on the top face.
24. Click Home > Relate > Symmetric on the ribbon. Click on the X-axis to define the symmetric axis.
25. Click on the horizontal lines in the sequence shown in figure.
26. Use the Smart Dimension command and apply dimension to the sketch.
27. Unlock the sketch plane and change the view orientation to Dimetric.
28. On the ribbon, click Home > Select > Select and click inside the region enclosed by the sketch.
29. On the command bar, click Extent Type > Through Next.
30. Click on the arrow and move the mouse pointer downward.
31. Click to create the extruded cut.
32. Activate the Line command and place the pointer on the horizontal face, as shown in figure.
33. Lock the face and draw the sketch. Apply dimensions and unlock the sketch plane.
34. On the status bar, click View Orientation > ISO View; the view orientation changes to isometric.
35. Click Home > Solids > Extrude on the ribbon and click on the sketch region. Right-click to accept.
36. On the command bar, click Extent Type > From-To.
37. Place the mouse pointer on the side face of the geometry and right-click when the mouse icon appears. The QuickPick box appears.
38. From the QuickPick box, select the bottom face of the geometry to define the face upto which the sketch is extruded.
39. Save and close the file.

Example 2 (Inches)
In this example, you will create the part shown below.
1. Start Solid Edge ST8.
2. On the Quick Access Toolbar, click New; the New dialog appears.
3. On the New dialog, click Standard Templates > ANSI Inch and select the ansi inch part.par template. Click OK to start a new part file.
4. Draw a sketch on the XZ plane, as shown below.

5. Unlock the sketch plane and click the Home icon below the Quick View Cube.
6. Activate the Select command and click inside the region enclosed by the sketch.
7. On the command bar, click Extrude > Revolve; the Extrude handle is replaced by the Revolve handle.
8. Click the spear of the Revolve handle, and then drag and align it with the top horizontal line.
9. Click the torus of the Revolve handle. Activate the Symmetric icon on the command bar.
10. Type-in 180 in the box displayed on the model. Press Enter and click to create the Revolve feature.

11. Activate the Line command and lock the top face of the part geometry.
12. Draw the sketch on top face and apply dimensions.

13. Unlock the sketch plane and change the model orientation to ISO.
14. Click Home > Solids > Revolve on the ribbon. Click inside the region enclosed by the sketch, and right-click to accept the selection.
15. Click on the X-axis to define the axis of the revolution.
16. On the command bar, deactivate the Symmetric icon.
17. Move the pointer and type-in 180 in the box displayed on the model.
18. Move the pointer downward and click to create the revolved cut.

19. Draw a sketch on the top face of the part geometry.
20. Revolve the sketch to create the third feature.
Extrude and Revolve Features

21. Save and close the file.

Questions
1. List the two methods to create Extrude features in Synchronous mode.
2. List the two methods to create Revolve features in Synchronous mode.
3. How do you create parallel planes in Synchronous mode?
4. List the three options to extrude sketches containing internal loops.
5. What are the treatment options available on the Extrude command bar?
6. List the four extent types available on the Extrude command bar.

Exercises
Exercise 1 (Millimetres)
Exercise 2 (Inches)

Exercise 3 (Millimetres)

SECTION A-A
Chapter 4: Placed Features

So far, all of the features that were covered in previous chapters were based on two-dimensional sketches. However, there are certain features in Solid Edge that do not require a sketch at all. Features that do not require a sketch are called placed features. You can simply place them on your models. You must have some existing geometry to create placed features. Unlike a sketch-based feature, you cannot use a placed feature as a first feature of a model. For example, in order to create a Fillet feature, you must have an already existing edge. Now, you will learn how to add placed features to your design.

The topics covered in this chapter are:

- Holes
- Threads
- Slots
- Rounds and Blends
- Chamfers
- Drafts
- Shells

Hole

You know it is possible to use the Extrude command to create cuts and remove material. But, if you want to drill holes that are of standard sizes, the Hole command is a better way to do this. The reason for this is it has many hole types already predefined for you. All you have to do is choose the correct hole type and size. The other benefit is when you are going to create a 2D drawing, Solid Edge can automatically place the correct hole annotation. Activate this command (Click Home > Solids > Hole on the ribbon) and you will notice that a command bar pops up. Click the Hole Options icon on the command bar to open the Hole Options dialog. The options on this dialog help you to create different types of holes.
Create a Simple Hole feature

To create a simple hole feature, select the Simple button from the top left corner and set the Standard of the hole. Set the Size of the hole and Hole Extents type. If you have selected Finite Extent, type-in a value in the Hole depth box. If you want a V-bottom hole, check the V-bottom angle option and type-in a value in the angle box. If you want to add a chamfer to the hole, check the Start Chamfer option. Type-in the chamfer offset and angle values. Click OK to close the dialog.

Set the Keypoints option on the command bar to All and start selecting points from the model. You can select an endpoint of a line, edge or curve (or) center point of an arc or circular edge by placing the pointer on the edge. After placing two holes continuously on a same face, you will notice that the face will be locked and all the future holes will be placed on the locked plane. Click the lock icon on the screen, if you want to unlock the face. After placing the holes, you can use the Smart Dimension command to position the hole.

If you want to place a hole on a cylindrical or curve surface, there is an easy technique to do this. Position the pointer on the cylindrical face and press F3 to lock the face. A plane tangent to the face will appear. Drag the pointer and type-in an angle value (or) select a key point to define the plane orientation. Now, place holes on the locked plane.
Create a Threaded Hole feature
To create a threaded hole feature, activate the Hole command and open the Hole Options dialog. On the Hole Options dialog, select the Threaded button and define the hole Standard. Define the other parameters such as sub type, size, and hole extents. Under the Threads section, select the Tap drill diameter, Internal diameter, or Nominal diameter option. For example, if you select the Nominal diameter option, the hole size on the geometry will be equal to the nominal diameter of the thread. Next, define the Thread extent. You can define it up to the hole extent or by entering a value. Click OK on the dialog and place the hole.
Create a Tapered Hole feature

Tapering is the process of decreasing the hole diameter toward one end. A tapered hole has a smaller diameter at the bottom. To create a tapered hole, select the **Tapered** button on the **Hole Options** dialog. Next, select the option to define the bottom diameter or top diameter. Type-in a value in the **Hole Diameter** box, and then define the taper ratio. The taper ratio is the rate of decrease in the diameter for a specific length. You can define the taper by using the **Decimal (R/L)**, **Ratio (R:L)**, or simply enter the taper angle in the **Angle** box. After defining the taper, specify the hole depth and end condition in the **Hole Extents** section. Click **OK** and place the hole feature.
Create a Counterbore Hole feature

A counterbore hole is a large diameter hole added at the opening of another hole. This counterbore hole is used to accommodate a fastener below the level of workpiece surface. The three types of counterbore holes that can be created in Solid Edge are shown in figure.

To create a counterbore hole, select the Counterbore button on the Hole Options dialog. Next, define the counterbore sub type, hole size, fit, counterbore diameter, and counterbore depth. Check the Neck Chamfer option under the Chamfer section, if you want a V-bottomed counterbore hole. Check the Thread option under the Thread section and define the thread parameters, if you want to add a thread to the hole. Click OK and place the hole.
Create a Countersink Hole feature

A countersink hole has an enlarged V-shaped opening to accommodate a fastener below the level of workpiece surface. To create a countersink hole, select the Countersink button on the Hole Options dialog. Type-in values in the Diameter, Countersink diameter, and Countersink angle boxes. You can also check the Head clearance option, if you want to provide head clearance. Set the hole depth and end condition in the Hole Extents section. Click OK and place the hole.
Modify Holes
After placing holes, you may be required to modify them or add more holes to the set. To modify a hole, you must select it and click on the hole diameter. A box appears with the hole parameters. Change the hole parameters by entering new values in the box. You can use the command bar options to change the hole type. Click and drag the arrows displayed on the holes to change the location of the hole.
Sweep Features

You will notice that, all the holes that are placed at a time are grouped under one set in the Pathfinder. If you modify one hole in the set, all the other holes will also be modified. Use the More holes option on the command bar to add more holes to the hole set. If you want to remove a hole from the set, click the right mouse button on it in the Pathfinder and select Separate. The hole will be separated.

Recognize Holes

This command converts the cylindrical features created by using the cutting operation into Hole features. This command is also helpful to convert the cylindrical cut features in the imported geometry into holes. Activate this command (click Home > Solids > Hole > Recognize Holes on the ribbon). The Hole Recognition dialog pops up and displays all the cylindrical cut features that are recognized as holes. As you place the pointer over the holes in the dialog, they will be highlighted in the model. Click the Hole Options buttons on the dialog to open the Hole Options dialog of individual holes. Change the hole type and diameter (if required) in this dialog and click OK. Uncheck the Recognize options, if you do not want to recognize the holes. Click OK on the Hole Recognition dialog to convert the cut features into holes.

Thread

This command adds a reference thread feature to a cylindrical face. The thread features are added to a 3D geometry so that when you create a 2D drawing, Solid Edge can automatically place the correct thread annotation. Activate this command (click Home > Solids > Hole > Thread on the ribbon) and click the Options icon on the command bar. The Thread Options dialog pops up. Set the thread parameters such as type, standard, size, thread diameter, and so on, and then click the OK button. Set the Extent Type on the command bar and select a cylindrical face. The Change Diameter message appears. Click OK to change the diameter of the cylindrical face to suit the selected thread size. Type-in the thread length and press Enter, if you have set the Extent Type to Finite Value.
Round

This command breaks the sharp edges of a model and rounds them. It does not need a sketch to create a round. All you need to have is model edges. Activate this command (click **Home > Solids > Round** on the ribbon) and select edges. As you start selecting edges, you will see a preview of the geometry. You can select the edges, which are located at the back of the model without rotating it. By mistake, if you have selected a wrong edge you can deselect it by holding the CTRL key and selecting the edge again. You can change the radius by typing a value in the box displayed on selected edge. As you change the radius, all the selected edges will be updated. This is because they are all part of one instance. If you want the edges to have different radii, you must create rounds in separate instances. Select the required number of edges and right-click to finish this feature. The **Round** feature will be listed in the Pathfinder.
After creating the *Round* feature, the command will be still active so that you can create more *Round* features. Now, if you select the **Loop** option on the command bar, the pointer will be able to select a loop of edges on a face. Select a loop and change the radius. As you press Enter, all of the edges will be rounded.

If you select the **All Fillets** option on the command bar, all fillets (concave corners) will be created on the model.

If you select the **All Rounds** option on the command bar, all rounds (convex corners) will be created on the model.
If you ever needed to change the radius of a Round feature, select it from the Pathfinder or from model, and then click the diameter value appearing on the feature. Next, type-in a new value in the box that pops up on the Round feature and press Enter. To remove a Round feature, right-click on it, and then select Delete.

Blend
This command creates a variable radius blend, blend between two faces, and surface blend. These three types of blends are explained next.

Variable Radius Blend
The process to create a variable radius blend is illustrated below.
Blend between faces
The process to create a blend between two faces is illustrated in the figure.
If you want the blend to be tangent to an edge, select the **Tangent Hold Line** option on the command bar and follow the steps given next.

Chamfer Equal Setbacks

The **Chamfer** and **Round** commands are commonly used to break sharp edges. The difference is that the **Chamfer Equal Setbacks** command adds a 45-degree bevel face to the model, whereas the Round command adds a curved face. A chamfer is also a placed feature. Activate this command (click **Home > Round > Chamfer Equal Setbacks** on the ribbon) and select an edge to chamfer. Type-in the distance value in the box attached to the chamfer and press Enter to create the chamfer.
Chamfer Unequal Setbacks
This command will be useful, if you want a chamfer to have different setbacks on both sides of the edge. As you activate this command, you need to select both a face and an edge. First, you need to select a face, which acts as the reference. Click the green check on the command bar, and then type-in the **Setback** and **Angle** value. Solid Edge measures the setback distance and angle with reference to the selected face. Select the edge to be chamfered, click the green check, and then click **Finish**.

Draft
When creating cast or plastic parts, you are often required to add draft on them so that they can be molded. A draft is an angle or taper applied to the faces of parts to make it easier to remove them from a mold. When creating **Extrude** features, you can predefine the draft angle. However, most of the time, it is easier to apply the draft after the features are created. Activate the **Draft** command from the **Solids** panel. Select a face that will act as a reference plane for the draft. The draft angle will be measured with reference to this face. After selecting the reference plane,
select the faces to draft. There are four options (Chain, Face, Loop, and All Normal Faces) on the command bar, which will help you to select the faces to draft. As you select the faces to draft, a two-sided arrow will appear along with a box. Use this two-sided arrow to define the direction of pull, and then type-in a value (angle) in the box. Press Enter to create the Draft feature.

Thin Wall
The Thin Wall is another useful command that can be applied directly to a solid model. It allows you to take a solid geometry and make it hollow. This can be a powerful and timesaving technique, when designing parts that call for thin walls such as bottles, tanks, and containers. This command is easy to use. You should have a solid part, and then activate this command from the Solids panel. Now, select the faces to remove, and then type-in the wall thickness in the box that appears on the model. Click the arrow on the model to specify whether the thickness is added inside or outside the model. Right-click to finish the feature.

Examples
Sweep Features

Example 1 (Millimetres)
In this example, you will create the part shown below.

1. Start Solid Edge ST8.
2. On the initial screen, click ISO Metric Part; a new part file is opened.
4. Lock the XZ plane and draw the sketch, as shown below.
5. Create the Extrude feature of 64 mm thickness.
7. Place the mouse pointer on the right side face and click the lock icon.
8. On the command bar, click the Hole Options icon; the Hole Options dialog pops up.
9. On this dialog, select the Countersink button and set the Standard to mm.
10. Type-in 20, 24, and 82 in the Hole Diameter, Countersink Diameter, Countersink Angle boxes.
11. Set the Hole Extents type to Through All. Click OK to close the dialog.
12. Place the mouse pointer on the top edge of the locked face and press E on the keyboard; a dimension appears between the edge and the hole.

13. Place the mouse pointer on the side edge of the locked face and press E on the keyboard; a dimension appears between the edge and the hole.

14. Set the dimension between the hole and top edge to 31 and press Tab on the keyboard.

15. Set the dimension between the hole and side edge to 32 and press Enter on the keyboard.

16. Unlock the plane by clicking the lock icon on the screen. Press Esc to deactivate the Hole command.

17. Activate the Hole command and place the mouse pointer on the top face of the part geometry. Lock the face.

18. Click the Hole Options icon on the command bar; the Hole Options dialog pops up.

19. On this dialog, select the Simple button and set the Standard to mm.

20. Enter 20 in the hole diameter box.

21. Set the Hole extents type to Through All. Click OK to close the dialog.

22. Place the mouse pointer on the midpoint of front edge.

23. Move the pointer on the locked face and notice a dotted line from the midpoint of the front edge.
24. Likewise, place the pointer on the midpoint of the side edge and move the pointer.

25. Click when both the dotted lines intersect with each other.

26. Unlock the face by clicking the lock icon. Press Esc to deactivate the Hole command.

27. On the Quick View Cube, click on the top left corner; the view orientation of the model changes.

28. Activate the Hole command.

29. On the command bar, click the Hole Options icon to open the Hole Options dialog.

30. Select the Simple button and set the Size to 10. Click OK on the dialog.

31. Place the mouse pointer on the lower top face, and then press F3.
32. Place the mouse pointer on the front edge of the locked face and press E on the keyboard; a dimension appears between the edge and the hole.
33. Place the mouse pointer on the side edge of the locked face and press E on the keyboard; a dimension appears between the edge and the hole.
34. Set the dimension between the hole and front edge to 30 and press Tab on the keyboard.
35. Set the dimension between the hole and side edge to 15 and press Enter on the keyboard; a hole is created and another hole is attached to the mouse pointer.

36. Likewise, place another hole on the other side. The positioning dimensions are same.

37. Click **Home > Solids > Round > Chamfer Unequal Setbacks** on the ribbon.
38. On the command bar, click the **Chamfer Options** icon; the **Chamfer Options** dialog pops up.
39. On this dialog, select **2 Setbacks** and click **OK**.
40. Click on the front face of the model and click the green check on the command bar.

41. Set the **Setback 1** and **Setback 2** to 20 and 10, respectively.
42. Click on the side edges of the selected face, as shown in figure.
43. Click the green check, and then **Finish** on the command bar.
44. Click **Home > Solids > Round** on the ribbon. Set the **Selection type** to **Edge/Corner**.
45. Click on the horizontal edges of the geometry, as shown below.
46. Type-in 8 in the box that appears on the geometry, and then press Enter.

47. Click on the outer edges of the model, as shown below.
48. Type-in 20 in the box that appears on the geometry, and then press Enter.

49. Change the orientation of the model view to Isometric by clicking the Home icon below the Quick View Cube.
50. Click Home > Solids > Round > Chamfer Equal Setbacks on the ribbon. Set the Selection type to Edge/Corners.
51. Click on the lower corners of the part geometry.
52. Type-in 10 in the box that appears on the part geometry. Press Enter to chamfer the edges.

53. Save and close the file.

Questions
1. What are placed features?
2. How do you create a hole on a cylindrical face?
3. Which command allows you to create chamfer with unequal setbacks?
4. Which command allows you to create a variable radius blend?
5. When you create a thread on a cylindrical face, will the diameter of the cylinder remains the same or not?

Exercises
Exercise 1 (Millimetres)
Sweep Features

Exercise 2 (Inches)
Chapter 5: Patterned Geometry

When designing a part geometry, oftentimes there are elements of symmetry in each part or there are at least a few features that are repeated multiple times. In these situations, Solid Edge offers you some commands that save your time. For example, you can use mirror features to design symmetric parts, which makes designing the part quicker. This is because you only have to design a portion of the part and use the mirror feature to create the remaining geometry.

In addition, there are some pattern commands to replicate a feature throughout a part quickly. They save you from creating additional features individually and help you modify the design easily. If the design changes, you only need to change the first feature and the rest of the pattern features will update, automatically. In this chapter, you will learn to create the mirrored and pattern geometries using the commands available in Solid Edge.

The topics covered in this chapter are:

- Mirror features
- Rectangular Patterns
- Circular Patterns
- Along Curve Patterns
- Fill Patterns
- Recognize Hole Patterns

Mirror

If you are designing a part that is symmetric, you can save time by using the **Mirror** command. Using this
Sweep Features

command, you can replicate individual features of the entire body. To mirror features (3D geometry), you need to have a face or plane to use as a reference. You can use a model face, default plane, or create a new plane, if it does not exist where it is needed.

Click on the features to be mirrored in the Pathfinder, and then activate the **Mirror** command (click **Home > Pattern > Mirror** on the ribbon). Now, select the reference plane about which the features are to be mirrored.

Now, if you make changes to the original feature, the mirror feature will be updated automatically.

If you select the **Detach Faces** option on the command bar, the faces of the feature will be mirrored, but will be detached from rest of the model.

Rectangular Pattern

This command creates a rectangular pattern of a feature. To create a rectangular pattern, you must first select the feature to pattern, and then activate the **Rectangular** command (click **Home > Pattern > Rectangular** on the command bar). Next, define the second corner of the rectangular pattern by moving the pointer diagonally and
clicking on the face of the model. You will notice that a pattern preview appears on the model. Now, select the **Fit** option on the command bar and set the parameters of the pattern (Total Spacing along X-axis and Y-axis, X Count, and Y Count). If you want to suppress some instances, click the **Suppress Instance** option on the command bar and select the green dots from the pattern preview. Next, click the green check on the command bar.

Select the **Fixed** option on the command bar, if you want to enter the spacing between individual instances of the pattern. Click the green check on the command bar to finish the rectangular pattern.

If you want to modify the rectangular pattern, just select it from the model or Pathfinder. A pattern annotation appears on it. Select the annotation, and then modify the pattern parameters. You can use the **Add to Pattern** option on the command bar to add more features to the pattern.
Circular Pattern
This command creates a pattern of selected features in a circular fashion. Select the feature to pattern and activate the Circular command (click Home > Pattern > Rectangular > Circular on the ribbon). Next, define the axis of the circular pattern by selecting a keypoint.

Along Curve Pattern
This command creates a pattern along a selected curve or edge. Activate this command (click Home > Pattern > Rectangular > Along Curve on the ribbon). Next, set the Selection Type on the command bar and click on a curve or edge. Click the green check on the command bar to accept the selection.
Select a point on the selected curve/edge to define the anchor point of the pattern. Click to define the side of the pattern. On the command bar, click the Advanced icon to display a box.

On this box, set the Transformation Type to Follow Curve and Rotation Type to Curve Position. Click the green check on the box and type-in a value in the Count box. On the command bar, set the Fill Style to Fit and click the green check to create the pattern along the curve.

Pattern by Table

The Pattern by Table command creates a pattern of a feature by using a spreadsheet to define the location of the pattern instances. This command uses the first two columns of a spreadsheet to define the X and Y coordinates of the instance. The value in the third column is used to define the orientation angle of the pattern instance. Select the feature to pattern from the model and activate the Pattern by Table command (On the ribbon, click Home > Pattern > Pattern drop-down > Pattern by Table). On the command bar, click the Pattern by Table Options icon to open the Pattern by Table Options dialog. On this dialog, specify the units by using the Use units from current document or Use custom units options. If you select the Use custom units option, then you can define Units and Round-off values from the table available on the dialog. Click OK after defining the units.
Sweep Features

Select the coordinate system from the graphics window; the **Instance Table** dialog pops up on the screen. On this dialog, click the **Browse** button, select the spreadsheet, and click **Open**. You can use the **Edit** and **Update** buttons to make changes to the spreadsheet. On the **Instance Table** dialog, select the **Coordinate system origin** or **Selected keypoint** option from the **Reference Point** section. Select a keypoint from the model, if you have set the **Reference Point** to **Selected keypoint**. Click the **Accept** button on the command bar to create the pattern.

Fill Pattern

This command creates a pattern of a feature by filling it on a defined region. You can create three different types of fill patterns: **Rectangular**, **Staggered**, and **Radial**.

Rectangular Fill Pattern

Select the feature from the geometry and activate the **Fill Pattern** command (click **Home > Pattern > Rectangular** > **Fill Pattern** on the command bar). Select the face or region on which to create the fill pattern. Set the **Fill Style** to **Rectangular** and click the green check on the command bar. Type-in the spacing values between the pattern instances.

On the command bar, click the **Suppress Instance** icon to suppress the unwanted instances.

Click the **Use Occurrence Footprint** icon to include the instances lying on the boundary.
Click the **Allow Boundary Touching** icon to include the instances that are outside the region and touching the boundary. Click the green dots on the instances to suppress them. On the command bar, click the green check after suppressing the instances.

Click and drag the pattern boundaries to increase or decrease the fill pattern region. After defining the required settings, right-click to create the rectangular fill pattern.

Staggered Fill Pattern
In this type of pattern, the features are arranged in a perforation fashion. To create a staggered fill pattern, set the **Fill Style** to **Stagger** on the command bar.

Click on the face fill and define the spacing between the instances. This can be done by using the **Fill spacing** methods. There are three methods to define the spacing between the instances: **Polar**, **Linear Offset**, and **Complex Linear Offset**. The **Polar** method creates a pattern by using (a) rotation angle between two rows and (b) distance between the instances. The **Linear Offset** method creates a pattern by using (c) spacing between two rows and (d)
Sweep Features

stagger offset. The **Complex Linear Offset** method creates a pattern by using (e) spacing between two instances in a row, (f) spacing between rows, and (g) stagger offset. Select a **Fill spacing method** and click the green check.

Specify the spacing parameters and click the green check to create the staggered pattern.

Radial Fill Pattern

In this type of pattern, the features are filled in a radial fashion inside the selected region. To create a radial fill pattern, set the **Fill Style** to **Radial** on the command bar.

Next, define the spacing between the instances. This can be done by using the Fill spacing methods. There are two methods to define the spacing between the instances: **Target Spacing** and **Occurrence Count**. The **Target Spacing** method creates a pattern by using (a) spacing between the rings and (b) spacing between the instances. The **Occurrence Count** method creates a pattern by using (a) number of instance per ring and (b) spacing between the rings.

Use the **Center Orient** option to orient the feature towards the center of the radial fill pattern. Specify the spacing parameters and click the green check to create the fill pattern.
Recognize Hole Patterns
This command converts the holes arranged in a circular or rectangular fashion into patterns. It will be easier for you to modify patterns than individual features. Activate this command (click **Home > Pattern > Recognize Hole Patterns** on the ribbon) and select the holes that are arranged in a circular or rectangular fashion. Right click to accept the selection. Click the **Define Master Occurrence** button on the **Hole Pattern Recognition** dialog and define the master occurrence of the pattern. Click **OK** to convert the group of holes into a pattern.

Recognize Patterns
This command is similar to the **Recognize Hole Pattern** command except that it converts any type of feature arranged in rectangular or circular fashion into a pattern feature. Activate the **Recognize Patterns** command (On the ribbon, click **Home > Pattern > Pattern drop-down > Recognize Patterns**) and select all the faces of anyone of the features arranged in the rectangular or circular fashion. Right click to accept the selection. On the **Pattern Recognition** dialog, click the **Define Master Occurrence** icon and select a feature from the pattern. The selected feature will act as the master occurrence. Click **OK** to recognize the arrangement as a pattern feature.
Examples

Example 1 (Millimetres)

In this example, you will create the part shown below.

1. Start Solid Edge ST8.
2. On the initial screen, click ISO Metric Part; a new part file is opened.
3. To start a new sketch, click Home > Draw > Rectangle by Center on the ribbon.
4. Lock the XZ plane and draw the sketch, as shown below.
5. Create the *Extrude* feature of 80 mm thickness.

6. Click **Home > Draw > Rectangle by Center > Rectangle by 2 Points** on the ribbon.
7. Lock the top face of the part geometry and draw the sketch.
8. Create the *Cutout* feature of **30 mm** depth.

9. Click on the *Cutout* in the Pathfinder.
10. Click **Home > Pattern > Mirror** on the ribbon.
11. Check the **Base Reference Planes** option in the Pathfinder and click on the **Right (yz)** plane. The selected geometry is mirrored.
Sweep Features

12. Press Shift on the keyboard and click on the Cutout, and Mirror in the Pathfinder.
13. Activate the Mirror command.
14. Click on the Front (xz) plane to mirror the selected geometry.

15. Activate the Hole command and place a counterbore hole on the Cutout feature. Press Esc to deactivate the Hole command. Also, unlock the locked face.
16. In the Pathfinder, click on the Hole option, if not already selected.
17. Click Home > Pattern > Rectangular on the ribbon.
18. Click on the opposite corner of the part geometry to define the rectangular pattern.
19. On the command bar, set the Fill Style option to Fit.
20. Type-in 100 in the spacing box along the X-axis, and then press Tab.
21. Type-in 56 in the spacing box along the Y-axis.
22. Type 2 in the X and Y boxes, respectively.

23. Click the green check on the command bar to create the rectangular pattern.
24. Activate the Hole command and lock the front face of the part geometry.
25. Activate the Hole Options dialog and set the parameters of the counterbore hole, as shown in figure.
26. Click on the midpoint of the top of the model to place the hole.
27. Unlock the front face. Press Esc to deactivate the **Hole** command.
28. Activate the **Hole** command and lock the top face of the part.
29. Activate the **Hole Options** dialog and set the parameters of the threaded hole, as shown in figure. Click **OK** to close the dialog.
30. Create the threaded hole and deactivate the **Hole** command.

31. Mirror the threaded hole about the YZ plane.

32. Draw a sketch on the front face of the part geometry and create a **Cutout** throughout the model.
33. Round the sharp edges of the geometry. The round radius is 2 mm.

34. Save and close the part file.

Questions
1. Describe the procedure to create a mirror feature.
2. List any two commands to create patterns.
3. Why it is important to convert a set of holes into a pattern?
4. How do you add more features to an existing pattern?
5. List the options that define the orientation of the feature in a fill pattern.

Exercises
Exercise 1 (Millimetres)
Sweep Features

Exercise 2 (Inches)

Sheet Thickness = 0.079 in
Chapter 6: Sweep Features

The **Sweep** command is one of the basic commands available in Solid Edge that allow you to generate solid geometry. It can be used to create simple geometry as well as complex shapes. A sweep is composed of two items: a cross-section and a path. The cross-section controls the shape of sweep while the path controls its direction. For example, take a look at the angled cylinder shown in figure. This is created using a simple sweep with the circle as the profile and an angled line as the path.

By making the path a bit more complex, you can see that a sweep allows you to create shapes you would not be able to create using commands such as Extrude or Revolve.

To take the sweep feature to the next level of complexity, you can add multiple paths and cross-sections. By doing so, the shape of the geometry is controlled by multiple cross-sections and paths. For example, the elliptical cross-section in figure varies in size along the path because an additional path controls it.

The topics covered in this chapter are:

- **Single Path and cross-section sweeps**
- **Multiple path and cross-section sweeps**
- **Scaling and twisting the cross-section along the path**
- **Swept Cutouts**
- **Helical sweeps and cutouts**
Sweep Features

Single path and cross-section sweeps
This type of sweep requires two elements: a path and cross-section. The cross-section defines the shape of the sweep along the path. A path is used to control the direction of the cross-section. A path can be a sketch or an edge. To create a sweep, you must first create a path and a cross-section. Create a path by drawing a sketch. It can be an open or closed sketch. Next, click Home > Planes > More Planes > Normal to Curve on the ribbon, and then create a plane normal to the path. Sketch the cross-section on the plane normal to the path.

Activate the Sweep command (click Home > Solids > Sweep on the ribbon). As you activate this command, a dialog appears showing different options to create the sweep. Select the Single path and cross-section option on the dialog and click OK.

Select the path and click the green check on the command bar.
Select the cross-section and click **Finish** on the command bar. Click **Cancel** to deactivate the command.

Solid Edge will not allow the sweep to result in a self-intersecting geometry. As the cross-section is swept along a path, it cannot comeback and cross itself. For example, if the cross-section of the sweep is larger than the curves on the path, the resulting geometry will intersect and the sweep will fail.

A sweep profile must be created as a sketch. However, a path can be a sketch, curve, or edge. The following illustrations show various types of paths and resultant sweep features.
Sweep Features

There are three options to merge faces of a sweep feature. These options are available on the Sweep Options dialog. The **No Merge** option creates a sweep feature without merging its faces. The **Full Merge** option merges all the faces of a sweep feature. The **Along path** option merges the faces along the direction of the path.
Section Alignment
The section alignment options define the orientation of the resulting geometry. The **Normal** option sweeps the cross-section in the direction normal to the path. The **Parallel** option sweeps the cross-section in the direction parallel to itself.

Face Continuity
The **Face Continuity** options define the tangency condition between the faces of a sweep feature. The **Tangent Continuous** option makes two faces tangent and continuous to each other. The **Curvature Continuous** option maintains the tangency as well as radius of curvature between two faces of a sweep feature.

Scale
Solid Edge allows you to scale the sweep along the path. Select the path and cross-section, and then click the **Options** icon on the command bar. Check the **Scale along path** option on the **Sweep Options** dialog, and then type-in the start and end scale factors. Click **OK** and **Finish** creating a scaled sweep feature.
Sweep Features

Twist
Solid Edge allows you to twist the cross-section along the path. Define the path and cross-section, and then click the Options icon on the command bar. The Twist options on the Sweep Options dialog help you to apply a twist to the cross-section.

![Twist Options](image)

The Number of Turns option turns the cross-section by the value you enter in the box.

![Number of Turns](image)

The Turns per Length option twists the cross-section by number of turns and length that you enter in the boxes.

![Turns per Length](image)

The Angle option twists the cross-section by an angle. Select this option and type-in values in the Start Angle and End Angle boxes.

![Angle](image)

Axis Step
The Axis Step option on the command bar will be useful while sweeping a cross-section along a non-planar path. For example, define a path and cross-section similar to the one shown in figure and click the Axis Step option on the command bar. Select a line or axis from the Base coordinate system. The cross-section and the axis will be locked.
in the same plane. As a result, the orientation of the cross-section and axis become same and the cross-section will be swept maintaining the orientation of the axis.

Multiple paths and cross-sections sweeps
Solid Edge allows you to create sweep features with multiple paths and cross-sections. This can be useful while creating complex geometry and shapes. To create this type of sweep feature, first create multiple paths and cross-sections as shown in figure. Activate the **Sweep** command and select **Multiple paths and cross-sections** on the **Sweep Options** dialog. Click **OK** to close the dialog.

Select the first path and click the green check on the command bar. Select another path and click the green check on the command bar. Select the third path, if available. Otherwise, click **Next** on the command bar. Select the all the cross-sections one-by-one and click **Preview** on the command bar. The preview of the geometry will appear. Click **Finish** to complete the feature.
Swept Cutout
In addition to adding swept features, Solid Edge allows you to remove geometry using the Swept Cutout command. Activate this command (click **Home > Solids > Swept Cutout** on the ribbon) and select the sweep type from the **Sweep Options** dialog. Click **OK** and select the path. Click the green check on the command bar to accept the path. Select the cross-section and click **Finish** to create the swept cutout.

You will notice that the swept cutout is not created throughout the geometry. This is because the cross-section is swept only up to the endpoints of the path. In this case, you must define a new path, which extends beyond the geometry. Delete the swept cutout from the Pathfinder and create two lines, which are continuous and collinear with the path. Activate the **Derived** command (click **Surfacing > Curves > Derived** on the ribbon) and select the edges and lines. Click the green check on the command bar to create a new curve. Now, create a swept cutout by using the curve as path. The resultant swept cutout will be throughout the geometry.
Helix

This command creates a spring shape feature. To create this type of feature, you must have a cross-section and a line (axis). They can be on a same plane or on different planes. Activate the Helix command (click Home > Solids > Helix on the ribbon), and then select the cross-section and line. Click the green check on the command bar. The preview of the geometry appears on the screen.

Now, define the Helix Method on the command bar. There are three helix methods: Axis & Pitch, Axis & Turns, Pitch & Turns. The Axis & Pitch method creates a helix by using the length of the axis and distance between the turns. The Axis & Turns method creates a helix by using the axis length and number of turns. The Pitch & Turns method uses the pitch and number of turns you specify to create the helix.

For more helix options, click the Options icon on the command bar. The Helix Options dialog pops up on the screen. This dialog has many options to define the parameters of the helix feature (such as helix direction, taper, and pitch). Define the helix direction by selecting the Right-handed or Left-handed option.
The **Taper** options on the Helix Options dialog help you to apply taper to the helix. There are two methods to apply taper to a helix: **By Angle** and **By Radius**. The **By Angle** method applies a taper to the helix by using the taper angle that you enter in the **Angle** box. The **Inward** or **Outward** options define the taper direction. The **By Radius** method applies a taper to the helix by using the start and end radius that you specify.

The **Pitch** options on the Helix Options dialog help you to create a variable pitch helix. Select the **Variable** option from the drop-down menu and type-in the **Pitch ratio** and **End Pitch** values. For example, if you specify the **Start Pitch** =10, **Turns** = 10, and **End Pitch** = 20, the pitch of the helix varies from 10 to 20. The rate of change in the pitch is calculated by the formula:

\[
Rate \text{ of change in pitch} = \frac{End \text{ Pitch} - Start \text{ Pitch}}{No. \text{ of turns}} = \frac{20 - 10}{10} = 1
\]

\[
The \text{ start pitch} = Start \text{ Pitch} + \frac{Rate \text{ of change in pitch}}{2}
\]

\[
The \text{ end pitch} = End \text{ Pitch} - \frac{Rate \text{ of change in pitch}}{2}
\]

Therefore, the pitch of the first turn = 10+0.5 =10.5
Second turn = 10.5+1 = 11.5
Third turn = 11.5+1= 12.5…………………..tenth turn=19.5

Click OK on the Helix Options dialog, and then click Accept to create the helix.

Helical Cutout

This command removes material from the part geometry by creating a helical feature. To create this feature, first you must have an existing geometry, and the sketches of the cross-section and axis. Activate this command (click **Home > Solids > Swept Cutout > Helical Cutout** on the ribbon) and select the cross-section and axis. Click the green check on the command bar to accept the selection. Define the number of turns and pitch, and then right-click to create the helical cutout.

Examples

Example 1 (Inches)

In this example, you will create the part shown below.
1. Start Solid Edge ST8.
2. On the Quick Access Toolbar, click New; the New dialog pops up.
3. On this dialog, click Standard Templates > ANSI Inch. Select the ansi inch part.par template and click OK.
4. On the ribbon, click Home > Draw > Line and draw the sketch on the XZ plane, as shown below.
5. Unlock the sketch plane.
6. On the ribbon, click **Home > Planes > More Planes > Normal to Curve** and click on the lower horizontal line.
7. Click on the endpoint of the line to locate the plane.

8. On the ribbon, click **Home > Draw > Circle by Center Point** and draw a circle of 2.5 inch diameter on the plane normal to curve.

9. On the ribbon, click **Home > Solids > Sweep**; the **Sweep Options** dialog pops up.
10. On this dialog, set the **Default Sweep Type** to **Single path and cross-section**.
11. Set the **Face Merging** option to **No Merge**.
12. Set the **Section Alignment** option to **Normal**. Click **OK** to close the dialog.
13. Click on the first sketch to define the path of the **Sweep** feature. Click the green check on the command bar.
14. Click on the circle to define the cross section.

15. Click **Finish** to complete the **Sweep** feature.
16. On the ribbon, click **Home > Solids > Thin Wall**. Click on the end face of the *Sweep* feature.
17. Rotate the part geometry and click the end face on the other side.
18. Type-in 0.5 in the box that appears on the geometry. Press Enter to shell the *Sweep* feature.

19. On the ribbon, click **Home > Draw > Project to Sketch** and click on the end face.
20. Leave the default options on the *Project to Sketch Options* dialog and click **OK**.
21. Click on the inner edge of the end face to project it.
22. Draw a circle of 4.5 in diameter.
23. Activate the **Extrude** command and click inside the two sketch regions.

24. On the Extrude command bar, select the **Include Internal Loops** option.

25. Right-click to accept the selection and move the mouse pointer. Type-in 0.75 in the box that appears on the geometry.

26. Press Enter to create the flange.

27. Draw a sketch on the flange face and create the **Cutout** feature.

28. In the Pathfinder, click on the **Cutout** feature, and then click **Home > Pattern > Rectangular > Circular** on the ribbon.

29. Place the pointer on the flat face of the flange and click the lock icon. Now, you have to define the axis of the circular pattern.

30. Place the pointer on a circular edge of the flange and click when the center point of the circular edge is selected. This defines the pattern axis.

31. Type-in 6 in the **Count** box and click the green check on the command bar. The cutouts are patterned in a circular fashion.
32. Change the model view orientation, as shown.

33. Create another flange and circular pattern.

34. Save and close the part file.

Questions
1. List the methods to create the Sweep features.
2. How to apply twist and turns to Sweep features?
3. Write the formula to calculate the variable pitch of a helical feature.
4. Why do we define the axis of a Sweep feature?
5. List any two methods to create helical features.
Exercises
Exercise 1
Sweep Features
Chapter 7: Loft Features

The Loft command is one of the advanced commands available in Solid Edge that allows you to create simple as well as complex shapes. A basic loft is created by defining two cross-sections and joining them together. For example, if you create a loft feature between a circle and a square, you can easily change the cross-sectional shape of the solid. This ability is what separates the loft feature from the sweep feature.

The topics covered in this chapter are:

- Basic Lofts
- Loft options
- Loft Cutouts

Loft

This command creates a loft feature between different cross-sections. To create a loft, first create two or more sections on different planes. The planes can be parallel or perpendicular to each other. Activate the Loft command (click Home > Solids > Sweep > Loft on the ribbon); the Loft command bar appears. The Cross-Section Step icon is active and ready for you to select the cross-sections that will define the loft. You need to select two or more cross-sections to define a loft. Select the cross-sections from the graphics window. The loft feature is sensitive to the location at which you will click to select the cross-section. For example, select the first cross-section by clicking near the right corner, and then select the second cross-section by clicking at a corresponding location. Click Preview on the command bar; the loft preview immediately appears, as shown below.

Now, click the Cross-Section Step icon on the command bar, and then click Define Start Point. Select the opposite corner on the first cross-section, and then click the Preview button; you will notice that a different result appears. For this reason, you have to be careful about where you click to select the cross-sections. However, if you do happen to make a mistake, you can use the Define Start Point icon to fix any unwanted twisting.
Tangency Controls
The shape of a simple loft is controlled by the cross-sections and the plane location. However, the Tangency Controls connected to the cross-sections can control the behaviour of the side faces. If you would like to change the appearance of the side faces, you can use the Tangency Controls either at the beginning of the loft, the end of the lofts or both. For instance, click on Tangency Control on the beginning of the loft and select Normal to Section; the preview of the loft updates. You can notice that the beginning of the loft starts in a direction normal to the cross-section. You can control how much influence the Normal to Section option will have by adjusting the parameter in the box attached to the cross-section. A lower value will have lesser effect on the feature. As you increase the value, the more noticeable the effect will be, eventually. If you increase the number high enough, the normal effect will lead to some weird results. You can also click and drag the handle attached to the cross-section to control the normal effect. If you want to change the direction of the Normal to Section effect, enter a negative value in the box attached to section. The same options can also be applied to the end cross-section of the loft.

Loft Cross-sections
In addition to 2D sketches, you can also define loft cross-sections by using different element types. For instance, you can use existing model faces, surfaces, curves, and points. The only restriction is that the points can be used at the beginning or end of a loft. Set the appropriate option in the Select drop-down menu to select different element types.
Closed Extent
Solid Edge allows you to create a loft that closes on itself. For example, to create a ring that lofts between each of the shapes, you must select four sketches as shown in figure, and then click the Extent Step icon on the command bar. Next, click the Closed Extent icon on the command bar, and click Preview; this will give you a closed loft.

Guide Curves
Similar to Tangency Controls, guide curves allow you to control the behaviour of a loft between cross-sections. You can create guide curves by using 2D sketches. You can also use the Keypoint Curve command to create guided curves. Activate this command (click Surfacing > Curves > Keypoint Curve on the ribbon) and select points to create a curve, as illustrated below. Right-click and click Finish to complete the curve. Likewise, create the other curves.
Now, activate the **Loft** command and select the cross-sections. To select guide curves, click the **Guide Curve Step** icon on the command bar and select the first guide curve, and then click the green check on the command bar. In the same way, select the other guide curves and click the **Preview** icon; you will see that the preview updates. Notice that the edges with guide curves are affected. The one without guide curve remains as it is.

Section Geometry

Sections used for creating lofts should have a matching number of segments. For example, a three sided section will loft nicely to another three sided section despite the differences in the shape of the individual segments. The **Loft** command does a good job of generating smooth faces to join them.

On the other hand, a four-sided section will not loft nicely to a two-sided section. Although Solid Edge succeeds in generating a loft, it maps the endpoints incorrectly and you may not get the desired result.
To get the desired result, you have to split one of the sections so that they have equal number of segments. Activate the Split command (click Home > Draw > Split on the ribbon) and split the arc into three segments. You can also use dimensions to define the exact location of the split points.

Now, create the loft feature by selecting the cross-sections.

Look at another example for a loft with mismatching segments. Activate the Loft command and select the cross-sections. Click the Extent Step icon on the command bar, and then click the Vertex Mapping icon; the Vertex Mapping dialog pops up. You can use this dialog to map vertices of the cross-sections. Click Set 1 on the dialog and select two vertices. Click Add on the dialog and select two vertices; another set of vertices is added to the loft. Similarly, add another set and close the dialog. Click Finish to complete the loft.
Loft Cutout

Like other standard features such as extrude, revolve and sweep, the loft feature can be used to add material or remove material. You can remove material by using the Loft Cutout command. Activate this command (click Home > Solids > Swept Cutout > Loft Cutout on the ribbon) and select the cross-sections. Click Preview and Finish to create the loft cutout.

Examples

Example 1 (Millimetres)
In this example, you will create the part shown below.
1. Start **Solid Edge ST8**.
2. On the initial screen, click **ISO Metric Part**; a new part file is opened.
3. To start a new sketch, click **Home > Draw > Circle by Center Point** on the ribbon.
4. Lock the XY plane and draw a circle of 340 mm diameter.
5. Create the **Extrude** feature with 40 mm thickness.

6. On the ribbon, click **Home > Planes > Coincident Plane**.
7. Click on the top face of the geometry to create a coincident plane.
8. Click on the Z-axis of the Steering Wheel tool and move the mouse pointer upward.
9. Type-in 315 mm in the dimension box and press Enter.
10. Activate the **Circle by Center Point** command and draw a circle of 170 mm diameter on the new plane. Also, add dimensions and constraints to the circle, as shown.
11. Change the model view orientation to ISO View.
12. On the ribbon, click **Home > Solids > Sweep > Loft**.
13. Click on the circle and the top circular edge of the *Extrude* feature.
14. Click **Preview** on the command bar to preview the loft protrusion.
15. Click **Finish** to complete the *Loft* feature.

16. Activate the *Extrude* command and click on the top face of the *Loft* feature. Right-click to accept the selection.
17. Move the mouse pointer up and type 40 in the box that appears on the geometry. Press Enter.
18. In the Pathfinder, press the Shift key and click on the Loft Protrusion and Extrude Protrusion. Activate the Mirror command.
19. Click on the YZ plane of the coordinate system to mirror the selected features.

20. On the ribbon, click Home > Solids > Thin Wall and click on the flat faces of the part geometry.
21. Type 2 in the box that appears on the geometry and press Enter. The part geometry is shelled.

22. Save and close the part file.

Questions
1. Describe the procedure to create a Loft feature.
2. List any two Tangency Control options.
3. List the type of elements that can be selected to create a Loft feature.
Exercises
Exercise 1
Chapter 8: Additional Features and Multibody Parts

Solid Edge offers you some additional commands and features which will help you to create complex models. These commands are explained in this chapter.

The topics covered in this chapter are:

- Ribs
- Web Network
- Mounting bosses
- Lips
- Vents
- Slots
- Multi-body parts
- Split bodies
- Boolean Operations
- Emboss features

Rib

This command creates a rib feature to add structural stability, strength and support to your designs. Just like any other sketch-based feature, a rib requires a two dimensional sketch. Create a sketch, as shown in figure and activate the Rib command (click Home > Solids > Thin Wall > Rib on the ribbon). Select the sketch and click the green check; the preview of the geometry appears. You can add the rib material to either sides of the sketch line or evenly to both sides. Set the Alignment type to Centered to add material to both sides of the sketch line. Type-in the thickness value of the rib feature in the box displayed on the model. You can use the steering wheel to change the direction of the rib.

If you activate the No Extend option on the command bar, the material will not extend to meet the faces of the surrounding features.
Activate the **Finite Depth** option, if you want to add material only up to some distance. Click the green check to complete the rib feature.

Web Network

This command is similar to the **Rib** command, but creates multiple ribs at a time forming a network. Create a two dimensional sketch, as shown in figure and activate the **Web Network** command (Click **Home > Solids > Thin Wall > Web Networks** on the ribbon). Select the sketch elements one-by-one and click the green check, the preview of the geometry appears.

Use the **Draft** option on the command bar to add a draft to the web network feature. Click the green check to complete the feature.

Mounting Boss

The process of creating mounting bosses can be automated using the **Mounting Boss** command. This command is
available only in the Ordered mode. Switch to the Ordered mode and activate the **Mounting Boss** command (click **Home > Solids > Thin Wall > Mounting Boss** on the ribbon). On the command bar, select **Coincident Plane** from the **Create from Options** drop-down menu. Select the top face of the model and define the location of the mounting bosses. Click **Close Sketch** on the ribbon and define the side of the bosses.

![Diagram of Mounting Boss creation process](image)

Click the **Options** icon on the command bar; the **Mounting Boss Options** dialog pops up on the screen. Define the parameters of the mounting boss. The parameters are self-explanatory. Click **OK** and then **Finish** completing the feature.

![Mounting Boss Options dialog](image)

Lip

This command allows you to create lips and grooves on edges of parts, saving you time by not having to create a series of manual cuts. Activate this command (click **Home > Solids > Thin Wall > Lip** on the ribbon) and select a chain of edges. Click the green check on the command bar and define the side of the lip. Click the left mouse button, and then click **Finish** to complete the feature.

![Diagram of Lip creation process](image)
Additional Features and Multibody Parts

Vent

This command allows you to take a two-dimensional sketch of a vent and convert it into a 3D cutout. To create a vent feature, first create a 2D sketch and activate the **Vent** command (click **Home > Solids > Thin Wall > Vent** on the ribbon). As you activate this command, the **Vent Options** dialog pops up on the screen.

Set the thickness of **Ribs** and **Spars** to 4.

Set the **Offset** values to 1 and **Depth** to 3.

Check the **Draft angle** option and enter 5 in the box.

Check the **Round & fillet radius** option and enter 0.5 in the box. Click **OK** on the dialog.
Select the boundary and click the green check on the command bar. Likewise, select the ribs and spars, and then click on the model to define the side of the vent. Next, click Finish to complete the feature.

Slot

This command creates a slot by using a 2D sketch. The sketch can have a single or multiple elements. If the sketch is having multiple elements, they should be tangent and continuous to each other. To create a slot, create a 2D sketch on a face, and then activate the Slot command (click Home > Solids > Hole > Slot on the command); the command bar pops up on the screen. Click the Options icon on the command bar to open the Slot Options dialog. Type-in a value in the Slot width box and select the end type. Click OK and select the sketch. Next, define the extent of the slot feature. Click the right mouse button to complete the slot feature.
If you want to create a counterbore slot, check the **Counterbore** option on the **Slot Options** dialog and define the **Path Offset** and **Depth Offset** values. You can create two types of the counterbore slots: **Recessed** and **Raised**.

Multi-body Parts
Solid Edge allows the use of multiple bodies when designing parts. This opens the door to several design techniques that would otherwise not be possible. In this section, you will learn some of these techniques.

Creating Multibodies
The number of bodies in a part can change throughout the design process. Solid Edge makes it easy to create
multiple bodies, and combine them into a single body. To create multiple bodies in a part, first create a solid body, and then activate the Add Body command (click Home > Solids > Add Body on the ribbon); the Add Body dialog pops up on the screen. Select the Add Part body or Add Sheet Metal body option, enter the body name in the New body name field, and then click OK. Now, create a solid body using anyone of the solid modeling tools; the Design Bodies entry will be added to the Pathfinder tree.

Split
The Split command can be used to separate single bodies into multiple bodies. This command can be used to perform local operations. For example, if you apply the shell feature to the front portion of the model shown in figure, the whole model will be shelled. To solve this problem, you must split the solid body into multiple bodies.

To split a body, you must have a splitting tool such as planes, sketch elements, surface, or bodies. In this case, a surface can be used as a splitting tool. To create a surface, activate the Bounded command (click Surfacing > Surfaces > Bounded on the ribbon) and set the Selection Type on the command bar to Single. Now, select the edges, as shown in figure. Click the green check on the command bar and click Finish to create the bounded surface.
Activate the **Split** command (click **Home > Solids > Add Body > Split** on the ribbon) and select the solid body from the graphics window. Next, select the bounded surface as the splitting tool and click the green check on the command bar. This results in two separate bodies. Press Esc to deactivate the **Split** command.

Now, double-click on **Design Body 2** in the **Pathfinder** tree to activate it, and then create the shell feature.

Union

If you apply rounds to edges between two bodies, it will result in a different outcome as shown in figure. To solve this problem, you must combine the two bodies using the **Union** command. Activate this command (click **Home > Solids > Add Body > Union** on the ribbon) and select the bodies. Click the green check on the command bar to combine the bodies. Now, apply rounds to the edges.
Intersect

By using the **Intersect** command, you can generate bodies defined by the intersecting volume of two bodies. Activate this command (click **Home > Solids > Add Body > Intersect** on the ribbon) and select two bodies. Click the green check to see the resultant single solid body.

Subtract

This command performs the function of subtracting one solid body from another. Activate this command (click **Home > Solids > Add Body > Subtract** on the ribbon) and select target body. Click the green check, and then select the tool body. Again, click the green check to subtract the tool body from the target. Hide the tool body to see the result.

Multi Body Publish

In addition to creating multiple bodies, Solid Edge also offers an option to generate an assembly from the resulting bodies. For example, create the model shown in figure and split it into two separate bodies. Next, add lip/groove feature to the model, and then save the model.
Activate the Multi Body Publish command (click Home > Solids > Add Body > Multi Body Publish on the ribbon); the Multi-body Publish dialog pops up on the screen. Click Save Files on the dialog to save the design bodies as individual files and create an assembly. Click the right mouse button on Create Assembly path and select Open. The newly created assembly is opened. Now, you can apply assembly relationships to the parts.

Emboss

This command allows you to change the shape of a solid body by using another solid body. The solid body that is changed is called the target body and the solid body that causes the changes is called the tool body. To create an emboss feature, you must have two solid bodies in a part. Activate the Emboss command (click Home > Solids > Thin Wall > Emboss on the ribbon) and select the target and tool bodies. Type-in values in the Clearance and Thickness boxes. Use the Direction icon on the command bar to define the side on which the body is embossed. Click the green check on the command bar to complete the emboss feature.
Examples

Example 1 (Millimetres)
In this example, you will create the part shown below.

MOUNTING BOSS PARAMETERS:
DIAMETER = 6 mm
HOLE DIAMETER = 3 mm
HOLE DEPTH = 8 mm
FILLET MOUNTING BOSS CORNER 2 mm
1. Start **Solid Edge ST8**.
2. On the initial screen, click **ISO Metric Part**; a new part file is opened.
3. On the ribbon, click **Home > Draw > Line** and draw the sketch on the XY plane, as shown below.

4. Create the **Extrude** feature of 15 mm depth.
5. Create the **Thin Wall** feature of 4 mm depth.

6. On the ribbon, click **Home > Solids > Thin Wall > Lip**.
7. Click on the inner edge of the **Thin Wall** feature and click the green check on the command bar.
8. Type 2 in the **Width** and **Height** boxes, respectively. Click inside the model to define the side of the lip. Click **Finish** and **Cancel** to complete the lip feature.
9. Click the right mouse button in the screen and select **Transition to Ordered**.
10. In the Ordered mode, click **Home > Solids > Thin Wall > Mounting Boss** on the ribbon.
11. On the command bar, select **Coincident Plane** from the **Create-From Options** menu.
12. Click on the top face on the lip feature.

13. Define mounting boss locations and add dimensions. Click **Close Sketch** on ribbon.
14. On the command bar, click **Mounting Boss Options** icon.
15. On the **Mounting Boss Options** dialog, set the **Boss diameter** to 6, check the **Mounting hole** option, and then set the **Hole diameter** to 3 and **Hole depth** to 8. Click **OK** to close the dialog.
16. Move the mouse pointer downward and click to define the side of the mounting boss.
17. Click **Finish** and **Cancel** to complete the mounting boss feature.

18. In the Pathfinder, click the right mouse button on the **Mounting Boss** and select **Move to Synchronous**.
19. Click the right mouse in the screen and select **Transition to Synchronous**.
20. Press and hold the Shift key and click on the **Lip** and **Mounting Bosses** in the Pathfinder.
21. On the ribbon, click **Home > Pattern > Mirror**.
22. Click on the YZ plane of the base coordinate system. The mounting bosses are mirrored.
23. On the ribbon, click **Home > Solids > Round** and select the edges where the mounting bosses meet the walls of the geometry.

24. Type 2 in the box displayed on the geometry. Click the right mouse button to round the selected edges.

25. Activate the **Hole** command and create a hole on the flat face of the geometry. The hole diameter is 15 mm.

26. On the ribbon, click **Planes > Coincident Plane**. Click on the top face on the lip feature.

27. On the ribbon, click **Draw > Circle by Center Point**. Lock the new plane.

28. Draw the sketch on the locked plane, as shown below. Next, unlock the plane.

29. On the ribbon, click **Home > Solids > Thin Wall > Web Network**.

30. Click on the elements of the sketch, and then click the green check on the command bar.

31. Type 2 in the box that appears on the part geometry, and then click the green check.
32. Save and close the file.

Questions
1. What is the use of the **Web Network** command?
2. How many types ribs of can be created in Solid Edge?
3. Why do we create multi body parts?
4. Describe the terms ‘Rib’ and ‘Spar’ in the *Vent* feature.
5. What is the use of the **Multi Body Publish** command?

Exercises
Exercise 1
Exercise 2
Exercise 3 (Inches)
Additional Features and Multibody Parts
Chapter 9: Modifying Parts

In design process, it is not required to achieve the final model in the first attempt. There is always a need to modify the existing parts to get the desired part geometry. In this chapter, you will learn various commands and techniques to make changes to a part.

The topics covered in this chapter are:

- Face Relations
- Modify models using steering wheel
- Live Rules
- Change model dimensions
- Live sections

Face Relations
Solid Edge allows you to define relations between faces. This will help you to control the behaviour of the faces when you modify the part geometry. There are different relations that can be applied between faces. These are explained next.

Coplanar
This command brings the selected faces onto one plane. Activate this command (click Home > Face Relate > Coplanar on the ribbon) and select the first face. Right-click and select the second face. Again, right-click to make the two faces coplanar.

Concentric
This command makes two cylindrical faces share a same centerpoint. Activate this command (click Home > Face Relate > Concentric on the ribbon) and select the first cylindrical face. Click the right mouse button and select the second cylindrical face. Click the green check on the command bar to make the first face concentric to the second one.
Symmetry
This command makes two faces symmetric about a plane. Activate this command (click Home > Face Relate > Symmetry on the ribbon), select the first face and click Accept on the command bar. Select the second face and click Accept on the command bar. Select the symmetric plane and click Accept to make the faces symmetric.

Offset
This command defines an offset distance between two faces. The selected faces should share a common face which is perpendicular to both of them. Activate this command (click Home > Face Relate > Offset on the ribbon), select the first face, and then click Accept on the command bar. Select the second face and click Accept. Type-in an offset value in the box displayed on the model. Click Accept on the command bar; the first face will be offset from the second face by the value you specified.
Modifying Parts

Parallel
This command makes two faces parallel to each other. The first face will be parallel to the second face.

Aligned Holes
This command makes the axes of selected cylindrical or conical faces lie on a same plane. Activate this command and select cylindrical faces from the part geometry. Click Accept on the command bar and select a plane or point. Click Accept on the command bar; you will notice that the axes of selected faces will be moved onto one plane.

Equal Radius
This command makes the selected cylindrical faces equal in radius. The radius of the first face will be equal to that of the second face.
Modifying Parts

Tangent
This command makes two faces tangent to one another.

Horizontal/Vertical
This command aligns the selected faces or keypoints vertically/horizontally.

Using the Steering Wheel Tool to Modify Models
Solid Edge provides you with a special tool called Steering Wheel Tool to modify faces and planes of part geometry. You can perform two operations using this tool: Move and Rotate faces.
Modifying Parts

Move faces
To move a face, click on it and select the arrow displayed on it. Move the pointer and click to define the distance. You can also type-in a value in the box displayed on the model. The Extend/Trim option on the command bar extends or trims the adjacent faces to match the new location of the selected face.

Use the Tip option, if you want to adjust the orientation of the faces connected to the selected face.

Use the Lift option, if you want to lift the selected face and add new faces to model.

Use the Detach Faces option, if you want to move and detach the selected face from the model.
Use the **Copy** option, if you want to move and copy the selected face.

Use the **Model Priority** option, if you want to move the selected face only up to the next face in the model.

Use the **Select Set Priority** option, if you want to move the selected face beyond any faces in the model.
Modifying Parts

Rotate faces
To rotate a face, you must click on it to display the Steering Wheel arrow. Click and drag the spear attached to the arrow, and then align it to an edge. This defines the axis of rotation. Now, click on the torus of the steering wheel and rotate the face. You can also type-in an angle value in the box displayed on the model.

![Image of rotating faces](image)

Design Intent Panel
The options on the *Design Intent* panel controls the part geometry when you modify its faces. It appears automatically on selecting any model face. For example, if you move a hole which is concentric to another cylindrical face, the *Concentric* option on the *Design Intent* panel maintains the relationship between the two faces. As a result, the both the faces will be moved. If you turn off this option, only the hole will be moved. Similarly, other options maintain the corresponding relationships while modifying the faces.

![Image of design intent panel](image)

For example, if you move a face, which is symmetric to another face about the YZ plane, the *Maintain Symmetry About Base Planes* option maintains the symmetric relationship. As a result, the other face will also be moved in the opposite direction. If you turn off this option, only the selected face will be moved.

![Image of symmetric movement](image)
Click the Advanced option on the Design Intent panel to display all the design intent options on the bottom portion of the graphics window. Uncheck the Design Intent option on the Design Intent panel, if you want to suspend all the design intent options. You can also use the Relax Dimensions and Relax Persistent Relationships options to relax the dimensions and face relationships.

Use the Solution Manager option to solve the errors while moving or rotating faces of the part geometry. Click this option and you will notice that the model faces are highlighted in different colors. The selected face is highlighted in green color. The error path is highlighted in orange color and the faces which are being solved are highlighted in blue color. Click on the blue faces, if you want to suppress the relationship between the selected face (highlighted in green) and them. Click on the maroon faces, if you want to restore the relationship between them and the selected set (green faces). Move or rotate the green face to get the desired result. Click the right mouse button to accept the result.
Modify the Part dimensions

Solid Edge allows you to add and modify dimensions between the faces of the part geometry. This will make the modification process much easy. To add a dimension, activate the **Smart Dimension** command and select an edge connecting two faces. Position the dimension and you will notice that a box pops up on the screen. Type-in a value in the box and click the arrows displayed on the box to define the face to be affected. Click the double-arrow button, if you want to modify both the faces. Click the lock button on the box to lock the dimension. The locked dimension will act as a driving dimension.

Live Sections

A Live section displays the cross section at a particular location in a part geometry. If you want to create live sections, activate the **Live Section** command (click Home > Section > Live Section on the ribbon) and select a flat face on the model. A live section will be created. Use the Steering Wheel Tool to move the live section. You can click and drag the edge of a live section. The part geometry will be modified, automatically.
Examples
Example 1 (Millimetres)
In this example, you will create the part shown below, and then modify it using the Synchronous editing tools.

1. Start Solid Edge ST8.
2. On the initial screen, click ISO Metric Part; a new part file is opened.
3. Create the part using the tools and commands in Solid Edge.
4. Click on the 20 mm diameter hole.
5. Click on the dimension value of the hole; the Hole command bar pops up on the screen.
6. On the command bar, click the Hole Options icon; the Hole Options dialog pops up.
7. On the Hole Options dialog, set the Standard to mm and select the Counterbore button and.
8. Set the Counterbore diameter to 30 and Counterbore depth to 10. Click OK to close the dialog.
9. Click the right mouse button to accept the changes.
10. Again, click on the counterbore hole and select the small arrow that appears on it.
11. On the Design Intent panel, make sure that the Concentric option is turned ON.
12. Move the mouse pointer and type 20 in the box that appears on the part geometry. Press Enter to move the hole.

13. Click on the side face of the bottom feature. An arrow handle appears on the face.
14. Click the spear of the handle and drag it; the Steering Wheel Tool appears.
15. Align the Z-axis of the Steering Wheel Tool to the vertical edge, as shown in figure.

16. Make sure that the Symmetric option is turned ON on the Design Intent panel.
17. Click on the torus of the Steering Wheel Tool and move the mouse pointer outside.
18. Type -20 in the box that appears on the geometry. Press Enter to rotate the faces.

19. Click on anyone of the hole of the Along Curve pattern; the whole pattern is selected.
20. Click the Pattern Handle that appears on the geometry; the Along Curve command bar pops up along with the Count box.
21. Type 14 in the Count box and press Enter to update the pattern.

22. Click on the top face of the geometry to display an arrow.
23. Click on the arrow and drag the mouse pointer down. Type 40 in dimension box and press Enter to update the model.

24. Save and close the file.

Questions
1. List any two face relationships.
Modifying Parts

2. How do you activate the Move command?
3. List the three options on the Move command bar that help you in moving faces
4. List any two live rules.
5. How do you modify revolved features using Live Sections?
6. What is Select Set Priority?

Exercises
Exercise 1
Modifying Parts
Chapter 10: Assemblies

After creating individual parts, you can bring them together into an assembly. By doing so, it is possible to identify incorrect design problems that may not have been noticeable at the part level. In this chapter, you will learn how to bring parts into the assembly environment and position them.

The topics covered in this chapter are:

- Starting an assembly
- Inserting Parts
- Adding Relationships
- Dragging and Moving parts
- Check Interference
- Capture Fit
- Editing Assemblies
- Replace Parts
- Pattern and Mirror Parts
- Transfer Parts
- Create Subassemblies
- Disperse assemblies
- Assembly Features
- Top-down Assembly Design
- Assembly Relationship Assistant
- Create Exploded Views

Starting an Assembly

To begin an assembly file, you can use the ISO Metric Assembly option or use the New icon and select an assembly template.

Now, you can insert parts into the assembly by using the Parts Library window. On the ribbon, click Home > Assemble > Insert Component to open the Parts Library. You can browse to the location of the parts by using the drop-down menu on the Parts Library window. As you select a component from the list, you can see a preview of the part in the Preview box. Now, double-click on the part to drop it into the graphics window.
Another way to start an assembly is to create it while a part is open. On the Solid Edge Application Menu, click New > Assembly of Active Model. The Create Assembly dialog pops up on the screen. Click the Browse button and select an assembly template from the New dialog. Click OK twice to start the assembly. You will notice that the part will be placed at the origin. By default, the first part will be grounded at the origin. Also, the ribbon displays the commands related to the assembly environment.

Inserting Parts

There are two different methods to insert an existing part into an assembly. The first one is to drag the part from the Parts Library and place it into the graphics window. The second way is to drag it directly from Windows Explorer. In the second method, you are not required to open these parts in Solid Edge. You can simply drag-and-drop the part into the assembly.
Assemblies

Adding Relationships
After inserting parts into an assembly, you have to define relationships between them. By applying relationships, you can make parts to flush with each other or make two cylindrical faces concentric with each other, and so on. As you add relationships between parts, the degrees of freedom will be removed from them. By default, there are six degrees of freedom for a part (three linear and three rotational). Eliminating degrees of freedom will make parts attached and interact with each other as in real life. Now, you will learn to add relationships between parts.

Click and drag the first part from the Parts Library into the assembly window; it will be fixed at the origin. As a result, all degrees of freedom of the part will be eliminated. Now, drag the second part into the assembly window, the Assemble command bar pops up on the screen. Select a face on the newly inserted part, and then click on a face of the fixed part. The two selected faces will mate with each other.

You can use the Flip icon on the command bar to flip the part.

Select the second set of faces.

Select the third set of faces; the part will be fully positioned. To confirm this, place the pointer on the corresponding part in the Pathfinder; a message will appear showing that the part is fully positioned.
Drag Components

As you insert a part into an assembly, Solid Edge prompts you to define relationships between parts. If you choose not to define any relationships, press the Esc key. The part will be under-constrained and free to move and rotate. You can use the Drag Components command to move or rotate the under-constrained parts in the assembly window. Activate this command by clicking Home > Modify > Drag Components on the ribbon. The Analysis Options dialog pops up on the screen. The options on this dialog are self-explanatory. Check the required options on this dialog and click OK. Select a part from the assembly window and drag it to a new location.

Use the Move option on the command bar to move the part in a particular direction. For example, to move the part in the X-direction, select the X-axis and move it (press and hold the left mouse button and drag the pointer).

Use the Rotate option on the command bar to rotate the part about an axis. For example, to rotate the part about the X-axis, select the X-axis and rotate it (press and hold the left mouse button and drag the pointer).
Likewise, use the **Freeform Move** option on the command bar to move or rotate the component randomly.

Use the **Detect Collisions** option on the command bar to detect collisions while moving or rotating the parts.

Use the **Physical Motion** option on the command bar to stop the part when it collides with another part.

You can also move or rotate grounded parts using the **Drag Component** command. Click the **Options** icon on the command bar and check the **Locate grounded components** option on the **Analysis Options** dialog. Click **OK** on the dialog to close it. Now, select and move (or rotate) the grounded part.
Mate Relationship

The **Mate** relationship makes two faces coincident and opposite to each other. You can define the **Mate** or any relationship between two parts immediately after you insert them. As you click and drag the part from Parts Library into the assembly window, the **Assemble** command bar pops up on the screen. On the command bar, click the **Relationship Types** icon and select **Mate**. Select a face of the inserted part, and then click on a face of the target part. The two selected faces will mate with each other.

Similarly, select the second set of faces.

Planar Align Relationship

The **Planar Align** relationship makes two faces flush with each other. To define this relationship, click the **Relationship Types** icon and select **Planar Align** on the **Assembly** command bar. Select a face on the placement part, and then a face on the target part. The two faces will be levelled.
Assemblies

Axial Align Relationship
The Axial Align relationship makes the axes of two cylindrical faces coincide with each other. You can activate this command either from the Assemble command bar (click Relationship Types > Axial Align) or from the ribbon (click Home > Assemble > Axial Align). After activating this command, click on a cylindrical face, linear edge, or axis of the placement part. Click the Lock Rotation icon on the command bar, if you want to lock the rotation of the part. Next, click on an element on the target part. The two cylindrical axes will be aligned together.

Insert Relationship
The Insert relationship helps you to position cylindrical parts into holes. This relationship is a combination of two relationships: Axial Align and Planar Align. It aligns the cylindrical axes and the end faces of two parts. Activate this command either from the Assemble command bar (click Relationship Types > Insert) or from the ribbon (click Home > Assemble > Insert). After activating this command, click on a cylindrical face or axis to align. Next, click on a cylindrical face on the target part. Click on a face to mate on the first part, and then click on a face on the target part. The first part will be inserted into the second part.
Angle Relationship
The Angle relationship is used to position faces at a specified angle. Activate this command either from the Assemble command bar (click Relationship Types > Angle) or from the ribbon (click Home > Assemble > Angle). After activating this command, type-in a value in the Angle Value box on the command bar and click on a plane or linear element of the first part. Next, click on a plane or linear element of the second part. Click on a plane on which the angle will lie. The first part will be positioned at the specified angle.

Tangent Relationship
The Tangent relationship is often used when working with cylinders and spears. It causes the geometry to maintain contact at a point of tangency. Activate this command either from the Assemble command bar (click Relationship Types > Tangent) or from the ribbon (click Home > Assemble > Tangent). After activating this command, click on the face to be made tangent. Next, click on the tangent face on the target part. The first part will be made tangent to the target part.

Connect Relationship
The Connect relationship connects a keypoint of one part to that of another part. Activate this command either from the Assemble command bar (click Relationship Types > Connect) or from the ribbon (click Home > Assemble > Connect). After activating this command, click on a keypoint on the first part. Next, click on a keypoint, edge, or face to connect to. The first part will be connected to the second part.
Assemblies

Parallel Relationship
The Parallel relationship makes an axis or edge of one part parallel to that of another part. Activate this command either from the Assemble command bar (click Relationship Types > Parallel) or from the ribbon (click Home > Assemble > Parallel). After activating this command, type-in a value in the Offset Value box on the command bar and click on a cylindrical face, linear edge, or axis of the first part. Next, click on an element of the second part. The two selected edges or axes will be parallel to each other.

Center-Plane Relationship
The Center-Plane relationship allows you to center a part between two faces. Activate this command either from the Assemble command bar (click Relationship Types > Center-Plane) or from the ribbon (click Home > Assemble > Center-Plane). After activating this command, you must select the object to be positioned at the center of two planes. Click on a planar face, edge, axis, keypoint, or reference plane on the first part. Next, click on two faces or reference planes on the second part. The first part will be centred between the two planes.
Match Coordinate Systems Relationship

The Match Coordinate Systems relationship matches the coordinate systems of two parts. This is the easiest way to constrain parts in an assembly. To apply this relationship, first you must display the coordinate systems of the parts. You can do so by clicking the Construction Display icon on the Assembly command bar and selecting the Show Coordinate Systems option (or) by right-clicking on the part and selecting Show Hide Component, and then turning on Coordinate Systems.

Activate this command either from the Assemble command bar (click Relationship Types > Match Coordinate Systems) or from the ribbon (click Home > Assemble > Match Coordinate Systems). After activating this command, you have to select the coordinate systems of two parts. They will be positioned together.
Rigid Set Relationship
The Rigid Set relationship makes the selected parts to form a rigid set. As you move a single part of a rigid set, all the other parts will also be moved. Activate this command from the ribbon (click Home > Assemble > Rigid Set); a command bar pops up on the screen. On the command bar, select an option from Shared Relationships menu. You can select to Suppress, Delete, or Ignore already existing relationships between the parts. Next, select parts from the assembly window and click the green check on the command bar. The selected parts will form a rigid set. Now, if you change the position or orientation of one part, all the other parts of the rigid set will also be affected.

Ground Relationship
By default, the first inserted part in an assembly is grounded or fixed. As a result, all the degrees of freedom of the part are constrained. However, you can make any other part grounded by using the Ground command. Activate this command (click Home > Assemble > Ground on the ribbon) and select the part to ground. A ground symbol appears on the selected part in the Pathfinder.

Path Relationship
The Path relationship is used to constrain a selected point or line along a path. Activate this command either from the Assemble command bar (click Relationship Types > Path) or from the ribbon (click Home > Assemble > Cam > Path). After activating this command, click on a point or linear edge to define the follower. Next, click on an edge to define the path. Click the green check on the command bar to apply this relationship. Use the Drag Component command to drag the follower.
Cam Relationship
The Cam relationship is similar to a Tangent relationship except that it allows you to mate a cylinder, plane, or point to a series of tangent faces. Activate this command either from the Assemble command bar (click Relationship Types > Cam) or from the ribbon (click Home > Assemble > Path > Cam). After activating this command, click on a face or a point to define the follower. Next, click on a face chain to define the cam. Click the green check on the command bar to apply this relationship.

Check Interference
In an assembly, two or more parts can overlap or occupy the same space. However, this would be physically impossible in the real world. When you add relations between parts, Solid Edge develops real-world contacts and movements between them. However, sometimes interferences can occur. To check such errors, Solid Edge provides you with a command called Check Interference. Activate this command (click Inspect > Evaluate > Check Interference on the ribbon) and select the first set. Click the green check on the command bar and select the second set. Click the Process icon to show the interference. If there is no interference, a message box appears showing that there are no interferences in the assembly.
Capture Fit

If you have an assembly in which you need to assemble the same part multiple times, it would be a tedious process. In such cases, the Capture Fit command will drastically reduce or even eliminate the time used to assemble commonly used parts. To use this command, first you need to define a relation or set of relations between two parts. For example, define the Insert relationship between the screw and the hole.

Next, save the assembly and select the screw. Activate the Capture Fit command (click Home > Assemble > Capture Fit on the ribbon); the Capture Fit dialog pops up on the screen. This dialog shows the list of relations that can be captured. If you do not want to capture some relations, select them from the list and click Remove. Next, click OK on the dialog to capture the relations.
Now, click and drag the screw from the Parts Library and place it into the assembly window; you will notice that the flat face on the screw is selected automatically. Select the top face of the block; the axis of the cylinder is selected, automatically. Select the axis of anyone of the holes on the block; the screw is inserted into the hole.

Editing and Updating Assemblies
During the design process, the correct design is not achieved on the first attempt. There is always a need to go back and make modifications. Solid Edge allows you to accomplish this process very easily. To modify a part in an assembly, right-click on it and select Open; the part will be opened in a separate window. Make changes to the part and save it. Next, switch to the assembly window. The part will be updated in the assembly automatically. If it is not updated, click Tools > Update > Update Active Level on the ribbon.
Assemblies

You can also edit relationships in an assembly. Select a part from the Pathfinder; the relationships applied to the part appear at the bottom of the Pathfinder. Click the right mouse button on a particular relationship to display a menu. You can use this menu to delete, suppress, flip, or edit relationship. If you select Edit Definition, the Assemble command bar pops up on the screen. You can redefine the faces or elements between which the relationship is applied. For example, if you want to edit the Mate relationship, right-click on it and select Edit Definition. On the Assemble command bar, click the Placement Part -Element icon, and then click on a face of the placement part. Next, click on a face of the target part, and then right-click to apply the relationship.

Replace Part
Solid Edge allows you to replace any part in an assembly. Activate the Replace Part command (click Home > Modify > Replace Part drop-down > Replace Part on the ribbon), and then click on parts to replace. Click the green check on the command bar to accept; the Replacement Part dialog pops up on the screen. Browse to the location of the replacement part and double-click on it; the Assembly message box pops up on the screen. It shows, “The affected Assembly relationships must be either deleted or suppressed to complete the operation”. Click Delete or
Assemblies

Suppress on the message box to replace the part. You can suppress or delete relationships based on the differences in the original and replacement part. You can redefine relationships after deleting them.

Repair Missing Files

Solid Edge provides a tool to find missing part files of an assembly. Whenever you open an assembly with some missing files, the **Repair Missing Files** dialog appears on the screen. On this dialog, select the missing part and use various options (**Search In**, **Replace Part**, **Replace with Standard Parts**, and **Replace with New Part**) to repair the assembly.

The **Search In** option brings up the **Search In** dialog, which helps you to search various folders on your computer. Click the **Browse** button on the **Search In** dialog, select a folder from the **Browse to Folder** dialog, and click **OK**. On the **Search In** dialog, click the **Add** button to add the selected folder to the **Search in these folders** list. Likewise, add other folders to the list. You can change the order of the folders using the **Move up** and **Move down** buttons. After adding folders to the list, click the **Search and Replace** button to start the search; Solid Edge will search the folder located at the top of the list. If the part file is not found, it will search the next folder.
You can also replace the missing parts using the Replace Part, Replace with Standard Parts, and Replace with New Part options.

Pattern

The Pattern command allows you to replicate individual parts in an assembly. However, instead of defining layouts of rectangular or circular patterns, you can select an existing pattern as a reference. For example, in the assembly shown in figure, you can position one screw using relationships, and then use the Pattern command to place screws in the remaining holes.

First, position the screw in one hole using the Insert relationship. Next, activate the Pattern command (click Home > Pattern > Pattern on the ribbon) and click on the part to include in the pattern. Click the green check on the command bar to accept the selection. Next, click on the part or sketch which contains the pattern.

Click on the pattern, and then select the reference feature in the pattern. Click Finish on the command bar to create the pattern.
Mirror Components

When designing symmetric assemblies, the Mirror Components command will help you in saving time and capture the design intent. Activate this command (click Home > Pattern > Mirror Components on the ribbon) and click on the parts to be mirrored. Click the green check on the command bar, and then click on an assembly reference plane to mirror about; the Mirror Components dialog pops up on the screen. On this dialog, select the required action from the Action drop-down menu. Type-in the output file name in the Output File field and click OK. Next, click Finish to complete the mirroring.

Sub-assemblies

The use of sub-assemblies has many advantages in Solid Edge. Sub-assemblies make large assemblies easier to manage. They make it easy for multiple users to collaborate on a single large assembly design. They can also affect the way you document a large assembly design in 2D drawings. For these reasons, it is important for you to create sub-assemblies in a variety of ways. The easiest way to create a sub-assembly is to insert an existing assembly into another assembly. You need to simply drag and place the assembly from the Parts Library window into an existing assembly. Next, apply relationships to constrain the assembly. The process of applying relationships is also simplified. You are required to apply relationships between only one part of a sub-assembly and a part of the main assembly. In addition, you can easily hide a group of parts with the help of sub-assemblies. Click the right mouse button on a sub-assembly and select Hide.
Assemblies

Rigid and Adjustable Sub-Assemblies
By default, Solid Edge makes a sub-assembly as a rigid body. When you move a single part of a sub-assembly, the entire sub-assembly will be moved. If you want the individual parts of a sub-assembly to be moved, you must define the sub-assembly as adjustable. Click the right mouse button on the sub-assembly in the Pathfinder and select **Simplified/Adjustable > Adjustable Assembly**. Now, you can move the individual parts of a sub-assembly. In case, if you have multiple occurrences of a sub-assembly, each occurrence can be defined as rigid or adjustable. To help you recognise the difference between the rigid and adjustable assemblies, Solid Edge displays a different icon for each of them in the Pathfinder.

Transfer
In addition to creating sub-assemblies and inserting them into another assembly, you can also take individual parts that already exist in an assembly and make them into a sub-assembly. For example, press and hold the **Shift** key and select the four parts from the assembly. Next, activate the **Transfer** command (click **Home > Modify > Transfer** on the ribbon); the **Transfer to Assembly Level** dialog pops up on the screen.
On this dialog, click on the Asm option, and then click New Subassembly; the Create New Subassembly dialog pops up on the screen. On this dialog, select the assembly template, enter file name, specify location, and specify positioning method. Click OK twice; the subassembly is created and listed in the Pathfinder.

Disperse
After inserting subassemblies, you may require to disperse them into individual parts. Solid Edge provides you with the Disperse command to break a subassembly into individual parts. Activate this command (click Home > Modify > Disperse on the ribbon); the Disperse Assembly dialog pops up on the screen. On this dialog, click Disperse Selected Assembly to disperse the selected assembly (or) click Disperse All Assemblies to break down all subassemblies in to individual parts. After clicking the required option, a message box pops up showing, “Transfer the parts in the selected assembly to the next higher level, and delete the selected assembly occurrence”. Click Yes to transfer the parts to the main assembly.

Assembly Features
Assembly features are the features that exist only in assemblies i.e. instead of creating them at the part level, they are created at the assembly level. Most often the features created at the assembly level are cuts, revolved cuts, holes, and welds. These features are commonly created at the assembly level to represent post assembly machining. For example, to add a cut feature to the assembly shown in figure, activate the Cut command (click Features > Assembly Features > Cut on the ribbon); the Assembly Feature Options dialog pops up on the screen. On this dialog, select Create Assembly Features and click OK. Select the top face of the block and draw the sketch of the cut feature. Finish the sketch and extrude it using the Through All option.
Assemblies

Now, open the individual part in another window. You will notice that the cut feature does not affect the part.

You will also notice that the Cut feature is added to the Pathfinder. You can edit the cut feature by clicking the right mouse button on the Cut feature and selecting Edit Definition. A command bar pops up on the screen. On the command bar, click the Select Part Step icon, and then press the Shift key and select the parts to be excluded from the cut feature. Click the green check on the command bar, and then click Finish; you can see that the cut feature no longer affects the selected components.
Assemblies

If you add a new part to the assembly, the cut feature will not affect it. Again, you need to edit the cut feature and use the Select Part Step icon to include the part in the cut feature.

Assembly-Driven Part Features
Assembly-Driven Part features are features, which are created in an assembly and are also reflected in the part documents. To create this type of feature, first save the assembly file, and then activate anyone of the commands available in the Assembly Features panel. Next click Create Assembly-Driven Part Features on the Assembly Options dialog and click OK. Create the assembly driven feature and it is listed in the Pathfinder. Now, open the individual part in another window. You will notice that the feature also affects the part. In addition, the feature is listed in the Ordered environment of the part file. When you update the feature in the assembly file, it will be reflected in the part file as well.
Part Features
Part features are features created in an assembly but are not associated to the assembly. Instead, they are associated to the part file on which they are created. To create a part feature, activate anyone of the commands available in the Assembly Features panel and click Create Part features on the Assembly Feature Options dialog. Click OK and create the part feature. Now, open the individual part in another window. You will notice that the feature also affects the part. In addition, the feature is listed in the Synchronous environment. If you want to edit a part feature, you must open the part file and make changes to it.

Top Down Assembly Design
In Solid Edge, there are two methods to create an assembly. The method you are probably familiar with is to create individual parts, and then insert them into an assembly. This method is known as Bottom-Up Assembly Design. The second method is called Top Down Assembly Design. In this method, you will create individual parts within the assembly environment. This allows you to design an individual part while taking into account how it will interact with other parts in an assembly. There are several advantages in Top-Down Assembly Design. As you design a part within the assembly, you can be sure that it will fit properly. You can also use reference geometry from the other parts.

Create Part In-Place
Top-down assembly design can be used to add new parts to an already existing assembly. You can also use it to create assemblies that are entirely new. To create a part using the Top Down Design approach, first you must save the assembly file, and then activate the Create Part In-Place command (click Home > Assemble > Create Part In-Place on the ribbon); the Create Part In-Place dialog pops up on the screen. The options available on this dialog are self-explanatory. Set the options on this dialog and click OK to close it.
On the command bar, select a template from the Template drop-down menu. If you want to access more templates, click the Browse for Template icon to display the New dialog. On this dialog, select the template you need and click OK.

On the command bar, click the Ground icon, if you want make the part grounded at the origin.

Use the Origin drop-down menu to specify the origin location.

Activate the Edit In Place icon to directly switch to the part environment to create the part. Click the green check on the command bar; the Save As dialog pops up on the screen. On this dialog, specify the part name and location on the drive, and then click Save to create the part. Now, create the features of the part, and then close and return to the assembly.
Assemblies

Assembly Relationship Assistant

Assembly Relationship Assistant is the command provided by Solid Edge intelligent technology. This command helps you to create relationships automatically based on the position and interaction between the parts. This command is very helpful while creating relationships in a top-down assembly design. Activate this command (click Home > Assemble > Assembly Relationship Assistant on the ribbon); the Relationship Assistant Options dialog pops up on the screen. Set the options on this dialog and click OK. Click on parts to define the first set, and then click the green check on the command bar. Click on parts to define the second set, and then click the green check on the command bar; the Relationship Assistant Settings dialog pops up on the screen. On this dialog, check the Allowable Relationship Types, and then click Process. This will analyze the position and interaction between the parts, and then apply relationships between them. The possible relationships are listed on the Relationship Assistant Settings dialog. Check the required relationships, and click Accept. Close the dialog and click Finish to apply the relationships.
Assemblies

Exploding Assemblies
To document an assembly design properly, it is very common to create an exploded view. In an exploded view, the parts of an assembly are pulled apart to show how they were assembled. To create an exploded view, activate the ERA command (click Tools > Environments > ERA on the ribbon); the Explode – Render – Animate environment is activated.

Use the Auto Explode command to explode the assembly, automatically. On activating this command, the Auto Explode command bar pops up on the screen. On the command bar, select Top-Level Assembly if you want to explode the complete assembly. If you want to explode only selected subassemblies, then select the Subassembly option. Next, click the green check on the command bar. Deactivate the Automatic Spread Distance icon on command bar and type-in the spread distance in the Distance box. Click Explode and Finish to explode the assembly.
Assemblies

You will notice that the parts are not exploded properly. To get a desired explosion, you need to use the **Explode** command. First, unexplode this assembly using the **Unexplode** command. On clicking this button, the **Solid Edge** message box pops up showing, “This action will delete the current explosion”. Click **Yes** to explode the assembly.

To manually explode an assembly, activate the **Explode** command; the **Explode** command bar pops up. Click on the parts to be exploded, and then click the green check on the command bar. Click on the part to be remained stationary in the explosion.

Click on the stationary part face from which you want to explode; an arrow appears on it. Move the pointer and click to define the direction of explosion; the **Explode Options** dialog pops up.
On this dialog, select an option to specify the **Explode Technique**. You can select **Move components as a unit** or **Spread components evenly**. Next, specify the **Explode order** by selecting the parts listed and using the **Move Up** and **Move Down** buttons. Click **OK** to close this dialog.

Type-in a value in the **Distance** box and click **Explode** to explode the parts. Click **Finish** to complete the explosion.
Assemblies

If the distance between the exploded parts is less or more, you can use the Drag Component command to adjust the spacing between them.

You can also select individual parts and type-in a new explode distance in the Distance box.

If you want to reorder an exploded component, click Reposition on the Modify panel and select the component to reorder. Select the component next to it. Click to define the side in which the component will be repositioned.

If you want to collapse an exploded part, click on it, and then click Collapse on the ribbon.
If you want to remove a part from the explosion, click on it, and then click Remove on the ribbon.

If you want to convert the explosion into a ‘move component’ operation, then click Drop on the Flow Lines panel. The flow lines are also converted into annotation flow lines.

If you want to modify a flow line, click Modify on the Flow Lines panel and select the flow line; two handles appears at start and end points of the flow line. Click on the start point handle, and then redefine the start point of the flow line. Similarly, redefine the end point of the flow line.

If you want to draw a new flow line, click Draw on the Flow Lines panel and select the start and end points; a flow line appears between the selected points. On the Draw command bar, click the Next icon to see different paths of the flow lines. Click Finish to complete the flow line creation.
Assemblies

After exploding the assembly, click Close ERA on the ribbon; the assembly environment appears.

Examples
Example 1 (Bottom Up Assembly)
In this example, you will create the assembly shown below.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Part Name (no extension)</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clamp Jaw</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Screw</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Screw Cap</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Handle</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Handle Cap</td>
<td>2</td>
</tr>
</tbody>
</table>
1. Start Solid Edge ST8.
2. Create and save all the parts of the assembly in a single folder. Name this folder as G-Clamp.
3. On the Application Menu, click New > ISO Metric Assembly to start an assembly file.
4. Click the Insert Component button on the ribbon to display the Parts Library window.
5. In the Parts Library window, use the drop-down menu and go to the G-Clamp folder.
6. In the Parts Library window, click Clamp Jaw and drag it into the assembly window.
7. In the Parts Library window, click Spindle and drag it into the assembly window.
8. On the command bar, click **Relationship Types > Axial Align**, and then click the **Lock Rotation** icon.

9. Click on the cylindrical face of the **Spindle** and hole of the **Clamp Jaw**.

10. On the command bar, click **Relationship Types > Planar Align**, and then type -40 in the **Offset Value** box.

11. Click on the back face of the **Spindle** and rotate the view.

12. Click on the flat face of the **Clamp Jaw**, as shown in figure.

13. In the **Parts Library**, click **Spindle Cap** and drag it into the assembly window.

14. On the command bar, click the **Lock Rotation** icon, and then click on the cylindrical face of the **Spindle Cap** hole.

15. Click on the small cylindrical face of the **Spindle**. The **Spindle** and **Spindle Cap** are axially aligned.
16. Rotate the model view and click on the flat face of the Spindle Cap, as shown in figure.

17. Click on the flat face of the Spindle. The Spindle Cap is assembled and fully constrained. However, you will notice that the part is oriented in reverse direction.

Note: Skip step 18 and 19, if the Spindle Cap is oriented properly.

18. In the Pathfinder, click Spindle Cap. The relations associated with the part appear at the bottom of the Pathfinder.

19. Click on the planar align relation, and then click the Flip button at the bottom of the screen. The Spindle Cap is reversed.

20. In Parts Library, click Handle and drag it into the assembly window.

21. On the command bar, click Relationship Types > Center-Plane and select the axis of the Spindle.

22. Click on the front face and back face of the Handle.
23. On the command bar, click **Relationship Types > Axial Align**. Click the **Lock Rotation** icon, and then click on the cylindrical face of the *Handle*.
24. Click on the hole of the *Spindle*. The *Handle* is axially aligned with the hole.

![Image](image.png)

25. In the **Parts Library**, click *Handle Cap* and drag it into the assembly window.
26. On the command bar, click **Relationship Types > Insert**, and then click on a cylindrical face of the *Handle Cap*.
27. Click on the cylindrical face of the *Handle*.
28. On the command bar, type 1 in the **Offset Value** box, and then click on the flat face of the hole of the *Handle Cap*.
29. Click the end face of the *Handle*. The *Handle Cap* is inserted into the *Handle*.

![Image](image.png)

30. Save the assembly with the name **G-Clamp.asm**.
31. In the **Pathfinder**, click on the *Handle Cap*, and then click **Home > Relate > Capture Fit**. The Capture Fit dialog appears. Click **OK** to close the dialog.
32. In the **Parts Library**, click *Handle Cap* and drag it to the assembly window. The **Mate** command is activated and the flat face of the *Handle Cap* is selected.
33. Type 1 in the **Offset value** box and click on the end face of the *Handle*. The **Axial Align** command is activated and axis of the *Handle Cap* is selected.
34. Click on the axis of the *Handle* to complete the assembly.

![Image](image.png)
35. Save and close the assembly.

Example 2 (Top Down Assembly)
In this example, you will create the assembly shown below.
Assemblies

1. Start Solid Edge ST8.
2. Start a new part file and create the Cylinder base. Do not create the center hole.
3. Create a new folder with the name *Pressure Cylinder*.
4. Save the file with the name *Cylinder base*.
5. On the Application Menu, click New > Assembly of Active Model. The Create Assembly dialog appears.
6. On this dialog, click OK to start a new assembly file. The *Cylinder base* is automatically placed at the origin.
7. Save the assembly file in the *Pressure Cylinder* folder.
8. On the ribbon, click Home > Assemble > Create Part In-Place. The Create Part In-Place Options dialog pops up on the screen.
9. On this dialog, under the Place the Origin section, select the By graphic input option.
10. Leave the other default options on this dialog and click OK. The origin of the new part is attached to the mouse pointer.
11. Place the mouse pointer on the circular edge of the Cylinder base.
12. Press T on your keyboard to toggle the orientation of the origin.
13. Click when the orientation of the part origin is same as that of the assembly origin.

14. On the command bar, click the green check. The Save As dialog pops up.
15. Type *Gasket* in the File name field and click Save. The part file is created and Part environment is activated.
16. On the ribbon, click Home > Draw > Project to Sketch and lock the XY plane.
17. Leave the default settings on the Project to Sketch Options dialog, and then click OK.
18. Click on the circular edges on the top face of the Cylinder base. The edges are projected to the locked plane.
19. Activate the Extrude command and click in the region enclosed by the sketch.
20. Right-click to accept the selection, and then set the Extent Type to Finite.
21. Move the mouse pointer upward.
22. Type 3 in the dimension box and press Enter to create the Extrude feature.
23. On the ribbon, click **Close and Return** to return to the assembly session.

24. On the ribbon, click **Home > Assemble > Create Part In-Place**.

25. On the **Create Part In-Place** dialog, under the **Place the origin** section, select the **Offset from assembly origin** option. Click **OK** to close the dialog. Now, you have to enter X, Y, and Z values (or) select a keypoint to specify the origin of the new part.

26. Click on the circular edge of the *Gasket* to define the location of the origin.

27. On the command bar, click the green check.

28. On the **Save As** dialog, type *Cover plate* in the **File name** field and click **Save**.

29. In the **Part** environment, activate the **Project to Sketch** command and lock the XY plane.

30. Project the outer and small circular edges.

31. Use the sketch and create an **Extrude** feature. The depth of the extrusion is 13 mm.

32. Activate the **Thread** command and add M10 x 1.25 to threads to the holes.
33. On the ribbon, click **Close and Return** to return to the assembly environment.
34. Activate the **Create Part In-Place** command and create the **Screw** on the top face of the **Cover plate**.
35. In the Part environment, activate the **Project to Sketch** command and lock the XY plane.
36. Project the a circular edge of the hole.
37. Use the sketch and create an **Extrude** feature of 30 mm depth. The direction of extrusion should be downward.

38. Create a circle of 15 mm diameter on the top face and extrude it in the upward direction. The extrude depth is 6 mm.
39. Activate the **Thread** command and add thread to the lower cylindrical face of the part. The thread size is M10 x 1.25.

40. On the ribbon, click **Close and Return** to return to the assembly environment. Now, you have to add relationships between parts.
41. On the ribbon, click **Home > Assemble > Assembly Relationship Assistant**. The **Relationship Assistance Options** dialog appears.
42. On this dialog, select the Select Set 2 option and click OK.
43. Click on the Cylinder base, and then click the green check on the command bar.
44. Click on the Gasket, and then click the green check on the command bar. The Relationship Assistant Settings dialog pops up.

45. On this dialog, make sure that the Mate and Axial Align relationships are turned on. Click the Process button to create relationships between the selected parts automatically.

46. Click on the relationships to highlight the faces associated with them.
47. Click Accept to create the relationships.
48. Close the dialog and click Finish to complete creating the relationships. Click Cancel to deactivate the command.
49. In the Pathfinder, click on the Gasket, and then click on the Axial Align relationship at the bottom.
50. At the bottom of the screen, click the Lock Rotation icon to arrest the rotation of the Gasket.

51. Use the Assembly Relationship Assistant command and create relationships between the other parts of the assembly.
52. On the ribbon, click Home > Pattern > Pattern, and then click on the Screw. Click the green check on the command bar to accept the selection.
53. Click on the Cylinder base and select the circular pattern.
54. On the command bar, click **Finish** to complete the pattern.

55. On the ribbon, click **Features > Assembly Features > Hole**. The **Assembly Feature Options** dialog pops up.

56. On this dialog, select the **Create Part features** option, and then check the **Create Synchronous Cuts, Holes, Revolved Cuts if possible** option. Click **OK** to close the dialog.

57. On the command bar, click the **Hole Options** dialog and set the options, as shown below. Click **OK** to close the dialog.

58. Click on the top face of the cover plate and place a hole circle at the center.

59. Click **Close Sketch** to exit the sketch.

60. Move the mouse pointer downwards and click to define the side of the hole.

61. On the command bar, click the green check to create the threaded hole.
62. On the ribbon, click **PMI > Model Views > Section**.
63. Click on the XZ plane and draw the sketch, as shown in figure.

64. On the ribbon, click **Close Sketch** to close the sketch.
65. Move mouse pointer such that the arrow points inside the sketch. Click to define the side of the section cut.
66. Extrude the sketch in the forward direction to create the section cut. Click **Accept** and **Finish** to create the section cut.

67. Explode, save, and close the assembly file.
Questions
1. How do you start an assembly from an already opened part?
2. What is the use of the Capture Fit command?
3. List the advantages of Top-down assembly approach.
4. What is a grounded part?
5. What is the use of the Assembly Relationship Assistant command?
6. How do you create a sub-assembly in the assembly environment?
7. Briefly explain the Edit-In Place command.
8. Why do we prefer the Explode command to the Auto Explode command?
9. What is the difference between rigid and adjustable subassemblies?
10. How to show or hide reference planes of a part?

Exercise 1
Assemblies

Base

Bracket

SPINDLE

BUSH

Roller
Bolt
Chapter 11: Drawings

Drawings are used to document your 3D models in the traditional 2D format including dimensions and other instructions useful for manufacturing purpose. In Solid Edge, you first create 3D models and assemblies, and then use them to generate drawings. There is a direct association between the 3D model and the drawing. When changes are made to the model, every view in the drawing will be updated. This relationship between 3D model and the drawing makes the drawing process fast and accurate. Because of the mainstream adoption of 2D drawings of the mechanical industry, drawings are one of the three main file types you can create in Solid Edge.

The topics covered in this chapter are:

- Create model views
- Projected views
- Auxiliary views
- Section views
- Detail views
- Broken-Out views
- Break Lines
- Display Options
- View Alignment
- Parts List and Balloons
- Retrieve Dimensions
- Arrange Dimensions
- Maintain Alignment
- Remove Alignment
- Line Up Text
- Ordinate Dimensions
- Chamfer Dimension
- Center Marks
- Centerlines
- Automatic Centerlines
- Bolt Hole Circles
- Callouts and Leaders
- Notes

Starting a Drawing

To start a new drawing, click the ISO Metric Draft option on the initial screen (or) click the New icon on the Quick Access Toolbar, and then double-click on the iso metric draft.dft template on the New dialog. If you want to start the drawing in any other standard, select the standard from the Standard Templates section and select the required template.
If you already have a part or assembly opened, you can click **Application Menu > New > Drawing of Active Model**; the **Create Drawing** dialog appears. On this dialog, click the **Browse** button to access different sheet templates. Select anyone of the sheet templates and click **OK**. On the **Create Drawing** dialog, check the **Run Drawing View Creation Wizard** option to start creating drawing views. If you uncheck this option, the drawing views will be created automatically. Click **OK** on the **Create Drawing** dialog to start a new drawing.

View Creation

There are different standard views available in a 3D part such as front right top and isometric. In Solid Edge, you can create these views using the **View Wizard** command. This command is activated automatically, if you have created a drawing from an already opened part. If it is not activated, click **Home > Drawing Views > View Wizard** on the ribbon. The **Select Model** window appears. Browse to the location of the part or assembly and double-click on it; a model view will be attached to the pointer. In addition, the **View Wizard** command bar pops up on the screen.

Click the **Drawing View Layout** icon on the command bar; the **Drawing View Creation Wizard** dialog pops up on the screen. On this dialog, select the first view from the **Primary View** list. Next, click on the icons that represent the standard views that are to be created. After selecting the standard views, click **OK** on the **Drawing View Creation Wizard** dialog. Click the **Set View Scale** icon to adjust the sizes of the views to sheet size. Click on the sheet to create views. Click and drag the views to position them.
After you have created the first view in your drawing, a principal view is one of the simplest views to create. Activate the Principal View command (click Home > Drawing Views > Principal View on the ribbon). After activating the command, select a view you wish to project from. Next, move the pointer in the direction you wish to have the view to be projected. Next, click on the sheet to specify the location; the projected view will be created. Click the right mouse button to deactivate this command.
Auxiliary View

Most of the parts are represented by using orthographic views (front, top and/or side views). However, many parts have features located on inclined faces. You cannot get the true shape and size for these features by using the orthographic views. To see an accurate size and shape of the inclined features, you need to create an auxiliary view. An auxiliary view is created by projecting the part onto a plane other than horizontal, front or side planes. To create an auxiliary view, activate the **Auxiliary** command (click **Home > Drawing Views > Auxiliary** on the ribbon). Click the angled edge of the model to establish the direction of the auxiliary view. Next, move the pointer to the desired location and click to locate the view.

Section View

One of the more common views used in 2D drawings is the section view. Creating a section view in Solid Edge is very simple. Once a view is placed on the drawing sheet, you need to draw a line where you want to section the drawing view. Activate the **Cutting Plane** command (click **Home > Drawing Views > Cutting Plane** on the ribbon) and click on a drawing view. Now, you have to draw a line to define the cutting plane. You can use the geometry of the drawing view to draw the line. After drawing a line, click **Close Cutting Plane** on the ribbon. Next, click on either side of the cutting plane to indicate the view direction.
Activate the **Section** command (click *Home > Drawing Views > Section* on the ribbon) and click on a cutting plane. Move the pointer and click to position the section view.

You can also use a multi-segment cutting line to create a section view.

Use the **Section Only** option to display only the geometry on the cutting plane.
Use the **Revolved Section View** option to create a revolved section view. First, draw a multiple segment cutting plane using the **Cutting Plane** command. Next, activate the **Section** command and select the multi-segment cutting plane. Click on a segment to define the fold angle of the section view. Click the **Revolved Section View** icon on the command bar. Move the pointer and click to position the revolved section view.

When creating a section view of an assembly, you can choose to exclude one or more components from the section cut. For example, to exclude the piston of a pneumatic cylinder, click the **Model Display Settings** icon on the command bar; the **Drawing View Properties** dialog pops up on the screen. On this dialog, select **piston** from the **Parts list** and uncheck the **Section** option. Click **OK** and locate the section view. You will notice that the piston is not cut.
Detail View

If a drawing view contains small features that are difficult to see, a detailed view can be used to zoom in and make things clear. To create a detailed view, activate the Detail command (click Home > Drawing Views > Detail on the ribbon); this automatically activates the circle tool. Draw a circle to identify the area that you wish to zoom into. Once the circle is drawn, set the Scale value on the command bar. Next, move the pointer and click to locate the view; the detail view will appear with a label.

Add Break Lines

Break lines are added to a drawing view, which is too large to fit on the drawing sheet. They break the view so that only important details are shown. To add break lines, select the view and click the right mouse button. Select Add
Break Lines from the popup menu; the Add Break Lines command bar pops up. On this command bar, click the Vertical Break or Horizontal Break icon and define the Break Line Type. Type-in the desired value in the Break gap box and move your pointer to the area of the view where you would like to start the break. Click once to locate the beginning of the break. Move the pointer, and click again to locate the end of the break. Click Finish on the command bar; the view is automatically broken.

Broken Out
The Broken-Out command alters an existing view to show the hidden portion of a part or assembly. This command is very useful to show the parts which are hidden inside an assembly view. You need to have a closed profile to break-out a view. For example, if you want to show the piston inside a pneumatic cylinder, activate the Broken-Out command (click Home > Drawing Views > Broken-Out on the ribbon) and select a drawing view to draw the profile. Draw a closed profile on the selected drawing view, and click Close Broken Out Section on the ribbon.

Now, move the pointer and click to specify the depth of the cutout.
Select the drawing view to apply the cutout.

Exploded View

You can display an assembly in an exploded state as long as the assembly already has an exploded view defined. If you want to add an isometric exploded view, activate the View Wizard command and select the assembly from the Select Model dialog. On the command bar, click the Drawing View Wizard Options icon; the Drawing View Creation Wizard dialog pops up. On this dialog, select Explode from the .cfg, PMI model view, or Zone drop-down menu and click OK. Click on the drawing sheet to locate the exploded view.

If you want to show an already existing isometric view in an exploded state, all you have to do is right-click the view and select Properties; the High Quality View Properties dialog pops up. On this dialog, click the Display tab and select the explode configuration file from the .cfg, PMI model view, or Zone drop-down menu and click OK. Next, click Update Views on the ribbon; the view will be updated.

Display Options

When working with Solid Edge drawings, you can control the way a model view is displayed by using the display
options. Select a view from the drawing sheet and click the **Shading Options** icon on the command bar; a menu appears. On this menu, select the desired shading type and click **Update Views** on the ribbon. The shading type of the view will be changed.

If you want to hide the hidden lines of a view, select it and click **Properties** on the command bar; the **High Quality View Properties** dialog pops up. On this dialog, uncheck the **Hidden edge style** option and click **OK**. The hidden lines will disappear from the model view.

View Alignment

There are several types of views that are automatically aligned to a parent view. These include section views, auxiliary views, and projective views. If you move down a view, the parent view associated with it will also move.

You need to break the alignment between them to move the view separately. Click the right mouse button on the view and select **Delete Alignment**. Now, click on the alignment line that appears between the two views.
If you want to create alignment between the views, click the right mouse button on the parent view and select Create Alignment. On the command bar, select the required alignment option and click on the view to be aligned.

If you want to temporarily delete the alignment between the views, click the right mouse button on the view and deactivate the Maintain Alignment option. Now, drag the view to a new location without affecting the position of the parent view.
Parts List and Balloons

Creating an assembly drawing is very similar to creating a part drawing. However, there are few things unique in an assembly drawing. One of them is creating parts list. A parts list identifies the different components in an assembly. Generating a parts list is very easy in Solid Edge. First, you need to have a view of the assembly. Next, click Home > Tables > Parts List on the ribbon, and then click on the drawing view. On the command bar, click the Properties icon to open the Parts List Properties dialog. On this dialog, click the List Control tab and select an option from the Global section. You can select the Top-level list, Atomic list, or Exploded list option. Next, select the required configuration and click the Columns tab.

In this tab, select the column names from the Columns section and arrange them using the Move Up and Move Down buttons. To add a new column, select the column name from the Properties section and click Add Column. To remove a column, select the column name from the Columns section and click Delete Column. Type-in a value in the Column width box.
Click the Balloon tab and type-in a value in the Text size box. Click the Shape icon and select the desired balloon shape. If you want to hide the item count inside the balloon, uncheck the Use Item Count for lower text option. Under the Auto-Balloon section, check the Create alignment shape option to create magnetic lines aligning the balloons. Click on the Pattern button and select the alignment shape from the menu. Click on the Order button to change the direction in which the balloons are created. Click OK on the dialog to close it.

Click on the drawing sheet to place the parts list. The balloons are created automatically.

Creating a Subassembly Parts List and Balloons

Solid Edge ST8 allows you to create parts list of a subassembly, which is part of the main assembly. Activate the Parts List command (Home > Tables > Part List on the ribbon). Select the assembly view from the drawing sheet.
Drawings

and click the Part List – From Selected Subassembly icon on the command bar. On the Select Assembly dialog, select the subassembly from the Assemblies list and click OK. Click on the drawing sheet to position the part list table; the balloons are attached to the parts of the selected subassembly.

Dimensions

Solid Edge provides you with different ways to add dimensions to the drawing. One of the methods is to retrieve the dimensions that are already contained in the 3D part file. Click Home > Dimension > Retrieve Dimensions on the ribbon. On the command bar, select the dimension types that you want to retrieve. Click on the drawing view where you want to display the dimensions.

You may notice that there are some unwanted dimensions. Simply select them and press Delete to remove them. In addition, the dimensions may not be positioned properly. To arrange them properly, activate the Arrange Dimensions command (click Home > Dimension > Arrange Dimension on the ribbon). Click on the dimensions, and then click the green check on the command bar. The dimensions will be arranged properly.
If you want to add some more dimensions, which are necessary to manufacture a part, activate the **Smart Dimension** command and add them to the view. You can also use the **Distance Between** command to add linear dimensions.

Note: You can use the dimension handles to modify the position of the dimension and size of the dimension and extension lines. The dimension handles are displayed on selecting a dimension.

Concentric diameter Dimensions

Solid Edge ST8 has a new option to create concentric diameter dimensions. Activate the **Smart Dimensions** command (on the ribbon, click **Home > Dimension > Smart Dimension**), and then select the circular edge of the drawing view. On the **Smart Dimension** command bar, click the **Concentric Dimension** icon. Place the diameter dimension, and then select a concentric circle; the second dimension is placed, automatically. Likewise, select other concentric circles to add dimensions to them.

Coordinate Dimensions

Coordinate dimensions are another type of dimensions that can be added to a drawing. To create them, activate the **Coordinate Dimension** command (click **Home > Dimension > Coordinate Dimensions** drop-down > **Coordinate Dimension** on the ribbon), and then click on any edge of the drawing view to define the ordinate or zero reference. Now, click on the points or edges of the drawing view and place the coordinate dimensions.
Automatic Coordinate Dimensions

The **Automatic Coordinate Dimensions** command creates coordinate dimensions automatically. On the ribbon, click **Home > Dimension > Coordinate Dimensions** drop-down > **Automatic Coordinate Dimensions**, and click the **Keypoint Options** button on the command bar. On the **Keypoint Options** dialog, select the type of the points that should be selected to create the coordinate dimensions. Click **OK** and select the drawing view. Click **Accept** and select a point on the drawing view to define the origin. Move the pointer vertically or horizontally and click to position the coordinate dimensions.

Change Coordinate Origin

The **Change Coordinate Origin** command is used to change the origin of the coordinate dimensions. Activate is command (On the ribbon, click **Home > Dimension > Coordinate Dimensions** drop-down > **Change Coordinate Origin**), and click on a coordinate dimension to change it as the origin.
Center Marks and Centerlines

Centerlines and Centermarks are used in engineering drawings to denote hole centers and lines. To add center marks to the drawing, activate the **Center Mark** command (click **Home > Annotation > Center Mark** on the ribbon) and click on the hole circles. The centermarks are added to the circles.

To add centerlines, activate the **Centerline** command (click **Home > Annotation > Centerline** on the ribbon). On the command bar, select **Placement Options > By 2 Lines**, and then click on two parallel edges of the drawing view. A centerline will be created between the two lines.

If you want to add centrelines automatically, activate the **Automatic Centerlines** command (click **Home > Annotation > Automatic Centerlines** on the ribbon). The **Automatic Centerlines** command bar pops up. On the command bar, click the **Options** icon to open the **Center Line and Center Mark Options** dialog. On the dialog, select the element to which the centerlines and center marks are to be added. Click **OK** to close the dialog. Click the drawing view to add centerlines and center marks.
Bolt Hole Circle
The Bolt Hole Circle command (click Home > Annotation > Bolt Hole Circle on the ribbon) allows you to add center marks to the holes arranged in a circular fashion. Activate this command and click for the center of the bolt hole circle. Drag the pointer and click for the radius point of the bolt hole circle. A bolt circle will be created.

Callouts and Leaders
Callouts and leaders are an essential element in creating drawings. In this section, you will learn to add callouts and leaders to a drawing. For example, to add a counterbore hole callout, activate the Callout command (click Home > Annotation > Callout on the ribbon). On the Callout Properties dialog, type-in values in the Callout text and Callout text 2 boxes. You can use the Special Character icons available on the dialog. Click the OK button and click on the hole. Drag the mouse pointer and click to place the callout.
If you have multiple elements in a drawing with the same callout value, you can use leaders to connect them to an existing callout. Activate the Leader command (click Home > Annotation > Leader on the ribbon) and click on an element. Drag the mouse pointer and click on an already existing callout.

Notes
Notes are important part of a drawing. You add notes to provide additional details, which cannot be done using dimensions and annotations. To add a note or text, activate the Text command (click Home > Annotation > Text on the ribbon). On the command bar, select the font and font size. Create a box and type text inside it.

You can use the Text command to insert associative text (reference and property texts). To insert a associative text in the drawing, activate the Text command and click to define the text position. On the Text command bar, click
the Insert Symbols, Characters or Property Text icon. Select Insert Property Text from the flyout. On the Insert Property Text dialog, click the Property Text icon to open the Select Property Text dialog. On this dialog, select a property from the Properties list and click Select. Click OK on the Select Property Text and Insert Property Text dialogs; the property text will be inserted on the drawing sheet.

Adding Technical Requirements
Solid Edge ST8 has a new option to add technical requirements to the drawing. On the ribbon, click Home > Annotation > Text drop-down > Technical Requirements. On the Technical Requirements Properties dialog, click the General tab and type-in the technical requirement in the box available at the top. Click Insert to add the technical requirement. Likewise, type-in another technical requirement and insert it into the table available at the bottom. Select the bullet style and format from the Style and Format drop-downs.

Click the Location tab and specify the Anchor corner. Click the Text Format tab and set the Font type, size, color, aspect ratio, and fit width. Click the Title tab and type-in the title of the technical requirements in the Title text box. Likewise, specify the Indentation and spacing on the Indenting and Spacing tab. Click OK on the Technical Requirement Properties dialog, and then position the technical requirements on the drawing sheet.

GENERAL NOTES: UNLESS OTHERWISE SPECIFIED:
1) REMOVE ALL BURRS AND SHARP EDGES
2) ALL TOLERANCES TO BE ± OR − .005
Drawings

Compare Drawings
Solid Edge ST8 allows you to compare two different versions of a drawing file. It is very useful when a drawing file is shared between different members of a team. To compare two drawings, click Application Menu > Compare Drawings. On the Compare Drawings dialog, under the Configure New Comparison section, click the Browse button next to the File 1 drop-down. On the Open File dialog, select the first version of a drawing file, and then click Open. Likewise, click the Browse button next to the File 1 drop-down and select the second version of the drawing. Select the sheets to be compared from the Sheet drop-downs, and then click Compare. The differences between the two versions of the drawing are displayed in the Differences section. You can use the Zoom Area, Fit, Pan, and Zoom buttons under the Display section to view various portions of the drawing. You can also save the comparison file for future use with the help of the Save button. You can load an existing comparison file using the Browse button in the Open Existing Comparison section.

Examples
Example 1
In this example, you will create the 2D drawing of the part shown below.
1. Start Solid Edge ST8.
2. On the initial screen, click ISO Metric Draft to start a new drawing.
3. At the bottom of the window, right-click on the Sheet 1 tab and select Sheet Setup.
4. On the Sheet Setup dialog, click the Size tab and select the Standard option. Set the sheet size to A3 Wide (420mm x 297mm).
5. Click the Background tab and set the Background sheet to A3-Sheet. Click OK to close the dialog.
6. On the ribbon, click View > Sheet Views > Background to activate the background. Deactivate the Working icon located below the Background icon.
7. At the bottom of the sheet, click **A3-Sheet**.
8. Select the revision table and press Delete on your keyboard.

9. In the Title Block, change the company name to Online Instructor.

10. Activate the **Working** icon on the **Sheet views** panel, and then deactivate the **Background** icon.
11. On the **Application Menu**, click the **Solid Edge Options** button. On the **Solid Edge Options** dialog, click the **Drawing Standards** tab. Set the **Projection Angle** to **Third** and click the **OK** button.

12. Activate the **Styles** command (click **Home > Dimension > Styles** on the ribbon). On the **Style** dialog, set the **Style type** to **Dimension**. Select **ISO (mm)** from the **Styles** box and click the **Modify** button.
13. On the **Modify Dimension Style** dialog, click the **Text** tab and set the **Font** type to **Arial**. Set the **Orientation** to **Horizontal** and **Position** to **Embedded**.

14. Click the **Units** tab and set the **Round-off** value to **1**.
15. Click the **Lines and Coordinate** tab and set the **Element gap** to 0.5 x Font Size. Under **Dimension Lines**, uncheck the **Connect** option. Click **OK** and then **Apply** to make changes to the dimension style.

![Modify Dimension Style](image)

16. On the **Quick Access Toolbar**, click the **Save** icon and browse to the location C:\Program files\Solid Edge ST8\Template\ISO Metric. Type **Online Instructor** in the **File name** box and click **Save**. Close the file.

17. On the **Application Menu**, click the **New** icon to open the **New** dialog. On this dialog, click **Standard Templates > ISO Metric** and select **Online Instructor.dft**. Click **OK** to start a new drawing file.

![New dialog](image)

18. Activate the **View Wizard** command (click **Home > Drawing Views > View Wizard** on the ribbon).

19. Browse to the location of Exercise 1 of Chapter 5 and click on the part file. Click the **Open** button.

20. On the command bar, click the **Drawing View Layout** icon.

21. On the **Drawing View Creation Wizard** dialog, set the **Primary View** to **front**. Click on the top view and isometric view icons. Click the **OK** button to close the dialog.

![Drawing View Creation Wizard](image)

22. On the command bar, set the **Scale** to **1:1**
23. Click on the left portion of the sheet to place the drawing views. Drag the isometric view and position it at the top right corner.

24. Click on the isometric view to activate the command bar. On the command bar, type-in 0.75 in the Scale box and press Enter.

25. Activate the Cutting Plane command (click Home > Drawing Views > Cutting Plane on the ribbon) and select the front view. Create a cutting plane passing through the center of the front view.
26. Activate the **Section** command (click **Home > Drawing views > Section** on the ribbon) and click on the cutting plane.

27. On the command bar, click the **Model Display Settings** icon. On the **Drawing View Properties** dialog, uncheck the **Hidden edge style** option and click **OK** twice.

28. Drag the mouse pointer toward right and click to position the view.

29. Activate the **Automatic Centerlines** command (click **Home > Annotation > Automatic Centerlines** on the ribbon). Click on the top view to apply centerlines.
30. Activate the **Centerline** command (click **Home > Annotation > Centerline** on the ribbon). On the command bar, select **By 2 Lines** from the **Placement Options** drop-down menu.
31. Click on the horizontal lines on the section view corresponding to holes. The centerlines are created between the hole lines.

32. Activate the **Center Mark** command (click **Home > Annotation > Center Mark** on the ribbon)
33. On the command bar, set the **Orientation** to **Horizontal/Vertical** and click on the hole located at the center of the front view.
34. Activate the **Bolt Hole Circle** command (click **Home > Annotation > Bolt Hole Circle** on the ribbon) and click on the hole located at the center of the front view. Drag the mouse pointer and click on anyone of the small holes. A bolt hole circle is created.
35. Activate the **Smart Dimension** command and apply dimensions to the top view.

36. Activate the **Symmetric Diameter** command (click **Home > Dimension > Symmetric Diameter** on the ribbon). On the command bar, activate the **Diameter-Half/Full** icon.

37. Click the centerline of the section view and horizontal line of the large hole. Drag the mouse pointer toward right, and position the diameter dimension.

38. Click on the angled edge of the section view and create another diameter dimension.
39. Activate the **Smart Dimension** command and click on the lower horizontal edge of the section view. On the command bar, activate the **Angle** icon and click on the inclined edge. Drag the pointer and click to position the angle dimension. Press Esc to deactivate the **Smart Dimension** command.

40. Click on the angle dimension and drag upward. On the command bar, click the **Prefix** icon to open the **Dimension Prefix** dialog.

41. On the **Dimension Prefix** dialog, type-in **TYP** in **Suffix** box and click **OK**.
42. Activate the **Smart Dimension** command and click on the small hole of the front view. On the command bar, click the **Prefix** icon.

43. On the **Dimension Prefix** dialog, type-in values in the **Prefix**, **Subfix**, and **Subfix 2** boxes, as shown. Click **OK** and position the hole dimension.

44. Activate the **Smart Dimension** command and open the **Dimension Prefix** dialog. On this dialog, empty the **Prefix**, **Subfix**, and **Subfix 2** boxes and click **OK**.

45. Create the other dimensions in the drawing.
46. Save and close the drawing.

Example 2
In this example, you will create an assembly drawing shown below.
1. Start Solid Edge ST8.
2. On the Quick Access Toolbar, click the New icon. On the New dialog, click on the Online Instructor.dft, and then click OK.
3. Activate the View Wizard command (click Home > Drawing Views > View Wizard on the ribbon).
4. Browse to the location of Example 2 of Chapter 10 and click on the assembly file. Click the Open button.
5. Click on the top right corner to place the isometric view of the assembly. Press Esc to stop view projection.
6. Again, activate the View Wizard command. On the Select Attachment dialog, check the Create drawing view independent of assembly option and set the Configuration to explode, Solid Edge. Click OK.
7. On the command bar, set the Scale to 1:1. Click on the drawing sheet to position the exploded view.
8. Activate the Parts List command (click Home > Tables > Parts List on the ribbon) and click on the exploded view.
9. On the command bar, click the Properties icon to open the Parts List Properties dialog.
10. On this dialog, click the Columns tab. In the Columns box, click on the Author option, and then click the Delete Column button.
11. On the Data tab, press Shift key and select all the cells of the table. Change the Font type to Arial.
12. On the **Balloon** tab, set the **Text Size** to 8 and uncheck the **Use Item Count for lower text** option. Click **OK**.
13. Position the parts list below the isometric view. You will notice that some balloons are placed outside the sheet.
14. Click on the alignment line connecting the balloons. Square and circle grips appear on it.
15. Click on a square grip and reduce the size of the alignment shape.

16. At the bottom of the sheet, click the **New Sheet** icon to add a new sheet to the drawing.
17. Right-click on **Sheet2** and select **Sheet Setup**. On the **Sheet Setup** dialog, click the **Background** tab and set the **Background sheet** to **A3-Sheet**. Click **OK**.
18. Activate the **View Wizard** command and uncheck the **Create drawing view independent of assembly** option.
19. From the Parts list, click the Cylinder Base.par file. Click **OK** and place the drawing view on the sheet.
20. Likewise, use the **View Wizard** command and place other part views, as shown below.

21. On the ribbon, click **Home > Annotation > Balloon**.
Drawings

22. On the command bar, type-in 2 in the Text Scale and Height boxes.

23. On the command bar, click the Link to Parts List icon, and then activate the Item Number icon.

24. Select a point on the cover plate to attach a balloon to it. Move the pointer and click to define the location of the balloon.

25. Likewise, add balloons to other views.

26. Save and close the drawing.

Questions

1. How to create drawing views using the View Wizard command?

2. How do you hide hidden edges of a drawing view?

3. How do you change the display style of a drawing view?

4. How do you update drawing views when the part is edited?

5. How do you control the properties of dimensions and annotations?

6. List the commands used to create centerlines and center marks.

7. How do you add symbols and texts to a dimension?

8. How do you add break lines to a drawing view?

9. How do you create revolved section views?

10. How do you create exploded view of an assembly?
Drawings

Exercises

Exercise 1
Create orthographic views of the part model shown below. Add dimensions and annotations to the drawing.

Exercise 2
Create orthographic views and an auxiliary view of the part model shown below. Add dimensions and annotations to the drawing.
Drawings
Chapter 12: Sheet Metal Design

Sheet metal parts are made by bending and forming flat sheets of metal. In Solid Edge, sheet-metal parts can be folded and unfolded enabling you to show them in the flat pattern as well as their bent-up state. There are two ways to design sheet-metal parts in Solid Edge. You either can start the sheet-metal part from scratch using sheet-metal features throughout the design process, or design it as a regular solid part and convert it to a sheet-metal part. Most commonly, sheet-metal parts are designed in Sheet Metal environment from the beginning. In this chapter, you will learn both the approaches.

The topics covered in this chapter are:

- Tabs
- Flanges
- Bend Allowance
- Bend Tables
- Counter Flanges
- Hems
- Close 2-Bend Corners
- Bends
- Jogs
- Dimples
- Louvers
- Drawn Cutouts
- Beads
- Gussets
- Etches
- Embosses
- Cuts
- Convert to Sheet Metal
- Rip Corners
- Flat Pattern
- Export to DXF or DWG

Starting a Sheet Metal part

To start a new sheet metal part, click the ISO Sheet Metal option on the starting screen (or) click the New icon on the Quick Access Toolbar, and then double-click on the iso sheet metal.psm template on the New dialog. If you want to start the sheet metal part using any other template, select a standard from the Standard Templates section, and then select the sheetmetal template corresponding to the selected standard.
Tab
The tab is a basic type of sheet metal feature. To create a tab, create a closed sketch on a plane and click inside it. An arrow handle appears along with the command bar. On the command bar, click the **Material Table** icon to open the **Solid Edge Material Table** dialog. On this dialog, select a material from the Materials tree; its properties are displayed in the **Material Properties** tab. You can also change the properties of the material in the **Properties** table.

Open the **Gage Properties** tab and define the gage properties of the sheet metal part. Type-in values in the **Material thickness**, **Bend radius**, **Relief depth**, **Relief width** boxes.
You can also use a spreadsheet to define these values. Check the **Use Excel file** option and select a gage table from the **Use Gage Table** drop-down menu. You can edit the gage table values by clicking the **Edit** button. In the spreadsheet, modify the values, and then save and close the file. You can also define the sheet metal properties by selecting anyone of the sheet metal gages available in the **Sheet metal gage** drop-down menu.

Next, type-in a value in the **Neutral Factor** box. The **Neutral Factor** is the ratio that represents the location of neutral sheet measured from the inside face with respect to the thickness of the sheet-metal. It defines the bend allowance of the sheet metal part. The standard formula that calculates the bend allowance is given below.

\[
BA = \frac{\pi (R + KT)A}{180}
\]

- \(BA = \text{Bend Allowance}\)
- \(R = \text{Bend Radius}\)
- \(K = \text{Neutral Factor} = \frac{t}{T}\)
- \(T = \text{Material Thickness}\)
- \(t = \text{Distance from inside face to the neutral sheet}\)
- \(A = \text{Bend Angle}\)
You can also define the bend allowance by using your own formula. Select the **Custom formula** option and type-in a value in the **ProgramID.ClassName** box. Click the **Apply to Model** button to apply the material and gage properties to the model. Now, click on the arrow handle to define the side of the tab feature. Click the right mouse button to create the tab feature.

Flange

The second feature after creating a tab is flange. This feature can be created along an edge or multiple edges of a sheet metal part. In order to create a flange, all you need is to click an end face of the tab feature. The flange handle appears on the selected face. Click the small arrow and drag the pointer. A flange feature appears attached to the mouse pointer.

On the command bar, click the **Flange Options** icon to open the **Flange Options** dialog. On this dialog, you can override the gage properties by checking the **Override global value** options available next to each of the gage property.
Under the **Corner Relief** section, select an option to define the type of corner relief. The three types of corner reliefs are shown below. Click **OK** to close the dialog.

![Corner Relief Options](image1)

On the command bar, select an option from the **Measurement Point** drop-down menu. Both the measurement points are explained in the illustration below.

![Measurement Points](image2)

Define the material side using the **Material Side** drop-down menu. The three types of material sides are shown below.

![Material Side Options](image3)
Click the **Partial Flange** icon to create the flange at the middle of the selected edge.

Type-in values in the distance and angle boxes that are attached to the flange. Click the right mouse button to create the flange.

Close 2-Bend Corner
The Close 2-Bend Corner command allows you to control the appearance of sheet metal seams. For example, when two flanges meet at a corner, this command allows you to close the gap between them. In addition to that, it applies a corner treatment. Activate this command (click **Home > Sheet Metal > Close 2-Bend Corner** on the ribbon) and click on two bends that meet at a corner. On the command bar, select the required corner treatment.
There are seven types of corner treatments available in the **Corner Treatment** drop-down menu, as shown below.

Note: The **Miter** corner treatment can be created only when the flanges are similar and perpendicular to each other.

On the command bar, click the **Overlapping Corner** icon to overlap one flange on the other. Next, type-in a value in the **Overlap ratio** box. Click the **Flip** icon to change the overlapping side.

Contour Flange

The contour flange is another basic type of sheet metal feature. To create a contour flange, you need to have an open sketch. Activate the **Contour Flange** command (click **Home > Sheet Metal > Contour Flange** on the ribbon) and click on the open sketch. Drag the mouse pointer and type-in a value in the distance box that is attached to the preview. Press Enter to create the contour flange feature.
You can also add contour flanges to a base tab. Activate the **Line** command and lock the end face of the tab feature. On the locked face, draw an open sketch, and then activate the **Contour Flange** command. Click on the sketch, and then click on the arrow pointing towards the model. The contour flange preview appears. You will notice that the contour flange is created along face perpendicular to the sketch. You can click on multiple faces to add contour flanges to them. You can also use the **Chain** option to select multiple faces at a time.

If you want to create a contour flange only up to a certain distance, then click the **Partial Flange** icon on the command bar and type-in the distance value.
On the command bar, click the **Contour Flange Options** icon to open the **Contour Flange Options** dialog. On this dialog, click the **Miters and Corners** tab and check the **Miter** option to apply miter to the ends of the contour flange. Under the **Interior Corners** section, check the **Close Corner** option to apply treatment to the corners.

Click **OK** on the dialog to close it. Right click to create the counter flange.

Hem

The **Hem** command is used to fold an edge of a sheet metal part. To add a hem, activate the **Hem** command (click **Home > Sheet Metal > Contour Flange > Hem** on the ribbon) and select the edge you need to fold over. On the command bar, the **Material Setback** drop-down menu controls whether the material is added to inside or outside the existing edge.

On the command bar, click the **Hem Options** icon to open the **Hem Option** dialog.
On this dialog, select a hem type from the **Hem type** drop-down menu and define its parameters. Different hem types are shown below.

If you want to bevel the end faces of the hem, check the **Miter hem** option and type-in a value in the **Angle** box. Click the **OK** button to close the dialog, and then right-click to complete the hem feature.

Bend

In addition to adding flanges and contour flanges, you can also bend a flat sheet using the **Bend** command. First, draw a sketch line on the flat sheet. Activate the **Bend** command (click **Home > Sheet Metal > Bend** on the ribbon).
Sheet Metal Design

and click on the sketched line. A two-sided arrow appears on the line. Click on the either side of the arrow to define the side to be folded. Type-in a value in the angle box to change the folding angle. Click on the arrow attached to the folded face to reverse the folding direction. Click the right mouse button to complete the feature.

Jog

The Jog command is used to add a jog or offset to a flat sheet. To add a jog to sheet metal part, first you must define its location. You can do this by drawing a sketch line. Next, activate the Jog command (click Home > Sheet metal > Jog on the ribbon) and click on the sketched line. A two-sided arrow appears on the selected line. Click on either side of the arrow to define the side of bend.

On the command bar, select a measurement point from the Measurement Point drop-down menu. Both the measurement points are illustrated below.

Type-in a value in the distance box and press Enter to add a jog to the sheet metal part.
Dimple

The **Dimple** command is used to add a dimple to a flat sheet by deforming it. To add a dimple to a sheet metal part, first you must define its shape, size, and location. You can do this by drawing a closed sketched. Next, activate the **Dimple** command (click **Home > Sheet Metal > Dimple** on the ribbon) and click in the sketch region. The sketch will be converted into a dimple shape. Click the arrow that appears on the dimple to change its direction.

On the command bar, click the **Dimple Options** icon to open the **Dimple Options** dialog. On this dialog, type-in the values of taper angle, punch radius, die radius, and corner radius. Click **OK** to close the dialog.

On the command bar, define the representation of the profile. You can select **Profile Represents Die** or **Profile Represents Punch**. Type-in a value in the distance box that is attached to the feature, and then press Enter to create the dimple.
Drawn Cutout

The drawn cutout and dimple feature are almost alike, except that an opening is created in case of drawn cutout. In order to create a drawn cutout, first you must have a closed sketch. Next, activate the Drawn Cutout command (click Home > Sheet Metal > Drawn Cutout on the ribbon) and click inside the sketch region. Click on the arrow that appears on the drawn cutout feature to change its direction.

On the command bar, click the Drawn Cutout Options icon to open the Drawn Cutout Options dialog. Type-in values of taper angle, die radius, and corner radius. Click OK to close the dialog. Next, on the command bar, click the Profile Represents Die or Profile Represents Punch icon. This determines whether the sidewalls are placed inside or outside the sketch profile. Next, type-in a value in the distance box attached to the feature and press Enter.

Bead

The Bead command creates a bead feature, which stiffens the sheet metal part. To create a bead feature, first you must have a sketch, which defines its size and shape. If the sketch is having curved edges, then ensure that they are tangent continuous. Next, activate the Bead command (click Home > Sheet Metal > Dimple > Bead on the ribbon) and click on the sketch. Click on the arrow that appears on the bead feature to change its direction.
On the command bar, click the **Bead Options** icon to open the **Bead Options** dialog. On this dialog, under **Cross Section**, select the cross section type and define the size parameters. Check the **Include Rounding** option to apply rounds to the edges of the bead feature. Under the **End Conditions** section, select the desired option and click **OK** to close the dialog. Click the right mouse button to complete the bead feature.

![Bead Options dialog](image)

Louver

Solid Edge provides you with the **Louver** command, which makes it easy to create louvers. Activate this command (click **Home > Sheet Metal > Dimple > Louver** on the ribbon) and place the mouse pointer on a face. You will notice that a louver appears parallel to an edge. Press N or B on your keyboard to change the orientation of the louver. Press F3 on your keyboard to lock the face, and then place the mouse pointer on an edge and press E to add location dimension.

![Louver command](image)

On the command bar, click the **Louver Options** icon to open the **Louver Options** dialog. On this dialog, select the end condition of the louver. The two types of end conditions are shown in figure.
Type-in the values of the length, depth, and height. Check the **Include rounding** option to round the edges of the louver. Type-in values in the X and Y boxes to shift the default origin of the louver. Click **OK** to close the dialog.

Type-in values in dimension boxes that are attached to the louver, and press Enter to complete the louver feature.

Gusset
Gussets are stiffening features created across a bend to reinforce the sheet metal part. To create a gusset, activate
the Gusset command (click Home > Sheet Metal > Dimple > Gusset on the ribbon) and click on a bend face. A gusset feature appears along with a dimension box attached to it.

On the command bar click the Gusset Options icon to open the Gusset Options dialog. On this dialog, select the gusset shape and type-in a value in the Depth box. Type-in values of taper angle, width, and radius. Check the Include rounding option to round the edges of the gusset, and then click OK to close the dialog.

On the command bar, select a patterning option from the Pattern drop-down menu. The Fit option creates pattern along the total length of the bend by using the count value that you specify. The Fill option creates a pattern along the total length of the bend by using the spacing value that you specify. The Fixed option creates a pattern by using the spacing and the count values that you specify.
Cut
When it is necessary to remove material from a sheet metal part, you must use the Cut command. First, draw a sketch and click inside it; a two sided arrow appears. Click on this arrow and drag the mouse pointer into the geometry. On the command bar, select the extent type from the Extents drop-down menu. Click the right mouse button to create the cut.

Creating Cut across Bends
If you need to create a cut across a bend, you must use the Wrapped Cut option. First, you must create a closed sketch across a bend. Press the Shift key and click inside the sketch region. On the command bar, activate the Wrapped Cut icon, and then click on the arrow handle. You will notice that the sheet metal part is flattened and a cut is created across the bend. Click the right mouse button to complete the cut.

Break Corner
The Break Corner command is used to round or chamfer the sharp corner of a sheet metal part. Activate this command (click Home > Sheet Metal > Break Corner on the ribbon) and click on the corner edges of the sheet metal part. If you want to break all the corners of the sheet metal part, then drag a window across the geometry. All the corners of the sheet metal part will be selected.
On the command bar, click the **Chamfer Corner** icon to apply chamfers to the corner edges. Type-in a value in the box that is attached to the round or chamfer. Press Enter to complete the break corner feature.

Flat Pattern

The **Flat Pattern** command flattens the part so that the manufacturing information can be displayed easily. To create a flat pattern, activate the **Flat Pattern** command (click **Tools > Model > Flatten** on the ribbon) and click on a base sheet. Next, click on an edge to define the x-axis of the flat pattern. Click the right mouse button to create the flat pattern.

You will notice that a new entry ‘Flat Pattern’ is created in Pathfinder. You can switch back to the modeling mode by clicking **Tools > Model > Synchronous** on the ribbon.

Lofted Flange

The **Lofted Flange** command allows you to create a lofted flange that can be unfolded into flat pattern. In Solid Edge ST8, the **Lofted Flange** command is available only in the **Ordered** environment. Transit to the **Ordered** environment and create two sketches on planes parallel to each other. Ensure that the sketches are not closed. In addition, the openings should be in the same direction.
Activate the **Lofted Flange** command (click **Home > Sheet Metal > Contour Flange > Lofted Flange** on the ribbon) click on the first cross section. Click the green check on the command bar to accept the selection. Click on the second cross section and click the green check.

On the command bar, type-in a value in the **Thickness** box. Click inside or outside the sketch to define the side of sheet metal. Click **Finish** to complete the lofted flange feature.

Create the flat pattern of the sheet metal part.
Thin Part to Synchronous Sheet Metal

Solid Edge has a special command, which automates the process of converting an already existing part into a sheet metal part. This command is called Thin Part to Synchronous Sheet Metal. First, create a part in the Synchronous environment, and then shell it using the Thin Wall command. Next, click Tools > Transform > Thin Part to Synchronous Sheet Metal on the ribbon.

On the command bar, click the Options icon to open the Transform to Sheet Metal Options dialog. On this dialog, set the relief depth and width, bend radius, and neutral factor. Click OK to close the dialog.

Click on a face of the part geometry to define the base face. A message pops up asking you to rip the edges of the part. Click OK to close the message.
On the command bar, click the Select Rip Edges Step icon and click on the side edges of the part. Click the green check to complete the conversion process. Now, you can save and close the file.

Part to Sheet Metal

The Part to Sheet Metal command creates a sheet metal part from a set of planar faces of a solid body. This command is available in the Ordered environment only. First, create a solid body using the solid modeling commands, and then activate the Part to Sheet Metal command (On the ribbon, click Tools > Transform > Part to Sheet Metal). On the Part to Sheet Metal Options dialog, specify the sheet metal properties and click OK. Click on linear edges of the solid body. The faces connected to the selected edge are highlighted.
Click the arrow to change the side of the sheet metal. Type-in the sheet metal thickness and right-click to convert the solid to sheet metal.

Sheet Metal Drawings
Creating drawings of a sheet metal part is same as any other drawing. However, there are some settings specific to sheet metal flat pattern. You can access these settings in the Annotation tab of the Solid Edge Options dialog.
To create a flat pattern view, activate the View Wizard command and select the sheet metal part. On the command bar, click the Drawing View Wizard Options icon to open the Drawing View Creation Wizard dialog. On this dialog, select the Flat pattern option and click OK.

On the command bar, set the Scale value and click to place the view. You will notice that the bends are represented by centrelines.

To add a bend table, click Home > Table > Parts List > Bend Table on the ribbon, and then click on the flat pattern view. Click on the sheet to position the bend table.
Export to DWF

In addition to creating drawings, you can directly export a sheet metal to DWF format which can be opened in AutoCAD. All you have to do is click Application Menu > Save As > Save As Flat. Select the sheet metal face that will be orientated upwards. Click on an edge of the selected face to define the x-axis of the DWF file. On the Save As Flat dialog, click the Options button to open the Save As Flat DXF Options dialog. On this dialog, set the layer properties and bend data, and then click OK. Type-in a name in the File name box and click Save. Now, you can open the DWF file in AutoCAD.
Examples
Example 1
In this example, you will construct the sheet metal part shown below.
1. Start Solid Edge ST8.
2. On the initial screen, click ISO Metric Sheet Metal to start a new sheet metal file.
3. Create a sketch on the top (XY) plane. Change the orientation of the model to the ISO View.

4. Click inside the region enclosed by the sketch. On the command bar, click the Material Table icon to open the Material Table dialog. On this dialog, open the Gage Properties tab and set the Sheet metal gage to 12 gage. Set the Neutral Factor to 0.5. Click Apply to Model to close the dialog.
5. Click on the arrow handle to make it point upwards. Click the right mouse button to complete the tab feature.
6. Click on the back end face to display the flange handle on it. On the flange handle, click the arrow pointing upwards, and then drag the mouse pointer.

7. On the command bar, set the **Measurement Point** to **Measurement Outside**. Set the **Material Side** to **Material Outside**.

8. Move the mouse pointer up and type-in **65** in the distance box. Press Enter to create the flange.

9. Create another flange on the left side. The flange length is 65 mm.

10. Lock the front-end face and draw a vertical line of **15** mm length. Activate the **Contour Flange** command (on the ribbon, click **Home > Sheet Metal > Contour Flange**) and click on the line.

11. Click the arrow pointing toward right.
12. Select the end face of the flange perpendicular to the tab feature. Click the right mouse button to create the contour flange.

13. Lock the outer face of the contour flange and draw the sketch shown below. Create a tab feature using the sketch.

14. Draw a horizontal line on the outer face of the tab. Activate the **Bend** command (click **Home > Sheet Metal > Bend** on the ribbon) and click on the line.
15. Click on the arrow pointing upwards. Type-in **135** in the angle box and press Enter to bend the tab feature.

16. Draw another sketch on the outer face of the contour flange.
17. Activate the Tab command and create a tab feature using the sketch.

18. Draw a horizontal line on the outer face of the tab feature. Activate the Bend command (click Home > Sheet Metal > Bend on the ribbon) and click on the sketched line.

19. Click on the arrow pointing upwards. Type-in 135 in the angle box and press Enter to bend the tab feature.

20. Create the sketch on the vertical face of the bend feature, as shown in figure.
21. On ribbon, click **Home > Sheet Metal > Hole > Cut**.
22. Click inside the regions enclosed by the sketch. Click the right mouse button to accept the selection.
23. On the command bar, click the **Wrapped Cut** icon, and then click the right mouse button.

24. Again, click the right mouse button to complete the cut feature.

25. Activate the **Close 2-Bend Corner** command (click **Home > Sheet Metal > Close 2 Bend Corner** on the ribbon) and click on the bends of the flange features.
26. On the command bar, set the **Corner Treatment** to **Circular Cutout**. Set the **Diameter** value to 8 mm. Click the right mouse button to close the bends.
27. Activate the **Hem** command (click **Home > Sheet Metal > Contour Flange > Hem** on the ribbon).

28. On the command bar, click the **Hem Options** icon to open the **Hem Options** dialog. On this dialog, set the **Hem type** to **Closed Loop**. Set the **Bend radius1** to 2 and **Flange length1** to 8. Click **OK** to close the dialog.

29. Click on the outer edges of the flange features. Click the right mouse button to create the hem features.

30. Rotate and orient the model, as shown below.
31. Activate the **Louver** command (click **Home > Sheet Metal > Dimple > Louver** on the ribbon) place the mouse pointer on the top face. Use the **N** key to change the orientation of the louver, as shown.

32. Press F3 on your keyboard to lock the plane.

33. On the command bar, click the **Louver Options** icon to open the **Louver Options** dialog. On this dialog, set the **Length**, **Depth** and **Height** values to 50, 10, and 5, respectively. Click **OK** to close the dialog.

34. Place the mouse pointer on the left edge and press E twice. The location dimensions appear.

35. Type-in 76 and 120 in the dimension boxes. Press Enter to create the louver feature.
36. Select the louver feature and create a rectangular pattern.

37. Change the view orientation of the sheet metal to Isometric.
38. On the ribbon, click **Tools > Model > Flatten** on the ribbon. The **Flat Pattern** command is activated.
39. Click on the top face of the tab feature.
40. Click on the front edge of the tab feature to define the x-axis of the flat pattern. The flat pattern is created.
41. On the ribbon, click **Tools > Model > Synchronous** to switch back to the Synchronous environment.
42. Save and close the sheet metal part.

Questions
1. How do you insert a flat pattern into a drawing?
2. Describe parameters that can be specified on the **Material Table** dialog.
3. Define the term ‘Neutral Factor’.
4. List any two parameters settings of a gage table that can be overridden when creating a feature.
5. What is the use of the **Cut** command?
6. Which command is used to apply rounds and chamfers to the corners of a sheet metal part?
7. List the types of hems that can be created in Solid Edge.
8. What does the **Close 2-Corner** command do?
9. What are the corner treatment options when closing a corner?
10. What is the difference between a dimple and drawn cutout?

Exercises
Exercise 1
Sheet Metal Design

Exercise 2

Sheets Metal Thickness = 2.77 mm
Sequence of Features

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Feature</th>
<th>Radius</th>
<th>Angle</th>
<th>Direction</th>
<th>Included Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bend 1</td>
<td>3.58 mm</td>
<td>90.00 deg</td>
<td>Down</td>
<td>90.00 deg</td>
</tr>
<tr>
<td>2</td>
<td>Bend 2</td>
<td>3.58 mm</td>
<td>90.00 deg</td>
<td>Down</td>
<td>90.00 deg</td>
</tr>
<tr>
<td>3</td>
<td>Bend 3</td>
<td>3.58 mm</td>
<td>90.00 deg</td>
<td>Up</td>
<td>90.00 deg</td>
</tr>
</tbody>
</table>
Chapter 13: Surface Design

The topics covered in this chapter are:

- Basic surfaces
- Curves
- Swept command
- BlueSurf
- Ruled
- Bounded
- Offset
- Copy
- Redefine
- Intersect
- Extend
- Replace Face
- Trim
- Extend
- Split
- Stitched

Solid Edge Surfacing commands can be used to create complex geometries that are very difficult to create using standard extruded bosses, revolve bosses, and so on. They can also be used to edit and fix the broken imported parts. In this chapter, you learn the basics of surfacing commands that are mostly used. The surfacing commands are available in the Surfacing tab.

Solid Edge offers a rich set of surface design commands. A surface is an infinitely thin piece of geometry. For example, consider a cube shown in figure. It has six faces. Each of these face is a surface, an infinitely thin piece of geometry that acts as a boundary in 3D space. Surfaces can be simple or complex shapes.
In solid modeling, when you have created solid features such as an Extruded feature or a Revolved feature, Solid Edge creates a set of features (surfaces) that enclose a volume. The airtight enclosure is considered as a solid body. The advantage of using the surfacing commands is that you can design a model with more flexibility. You can create surfaces in Synchronous and Ordered environments. However, Ordered environment offers history-based modeling which makes it easy to edit surfaces.

Extruded Surface
To create an extruded surface, first create an open or closed sketch and activate the Extruded command (on the ribbon, click Surfacing > Surfaces > Extruded). Select the sketch and right-click. Next, type-in a value in the Distance box available on the command bar, and press Enter. On the command bar, click the Close Ends button to create an extruded surface with closed ends. You can also use the Treatment Step button to apply draft or crown to the extruded surface. Click Finish to create the extruded surface.

Revolved Surface
To create a revolved surface, first create an open or closed profile and the axis of revolution. Activate the Revolved command (on the ribbon, click Surfacing > Surfaces > Revolved). Select the sketch and right-click. Select the axis and right-click. Type-in the angle of revolution in the Angle box or click the Revolve 360 button. Click to define the side of the revolution, in case you have specified the angle value. Click Finish to complete the feature.
Even if you create an enclosed surface, Solid Edge will not recognize it as a solid body. You can examine this by activating the Physical Properties command (on the ribbon, click Inspect > Physical Properties > Physical Properties). On the Physical Properties dialog, click the Change button under the Density section. The Solid Edge Material Table dialog appears. On this dialog, select a material from the Material tree and click Apply to Model. Next, click Update on the Physical Properties dialog. You will notice that all the physical properties are displayed as zero. This means that there exists no solid body. You will learn to convert a surface body into a solid later in this chapter.

Keypoint Curve

The Keypoint Curve command creates curves through selected keypoints. You can click in the graphics window to selected point or select existing points. Activate this command (on ribbon, click Surfacing > Curves > Keypoint Curve) and select keypoints from the graphics window. Click Accept and Finish on the command bar.

Curve by Table

The Curve by Table command creates curves by using the X, Y, Z points. These points can be defined using a spreadsheet. Create a spreadsheet by entering values in the A, B, and C columns and save it. The values in the A, B, C columns of the spreadsheet represent the X, Y, Z values. Activate the Curve by Table command (on ribbon, click Surfacing > Curves > Keypoint drop-down > Curve by Table). On the Insert Object dialog, select the Create from file option and click the Browse button. Go to the location of the spreadsheet and double-click on it. Click OK to close the dialog. You will notice that a curve appears.
On the command bar, click the **Parameters Step** button. On the **Curve by Table Parameters** dialog, set the **Curve fit** type. You can select **Linear**, **Smoothing off**, and **Smoothing on**. The **Linear** option creates a linear curve. The **Smoothing off** option creates a curve directly passing through the points. The **Smoothing on** option creates a curve whose path is controlled by the **Tolerance** value.

Next, set the **Curve End Conditions**. You can define open or close curves. Specify the **Units** and **Coordinate system**, and then click **OK**. Click **Finish** to complete the curve.

Intersection
The **Intersection** command creates a curve at the intersection of the surface and plane, or two surfaces, or solid and surface, or solid and plane. Activate the **Intersection** command (on the ribbon, click **Surfacing > Curves > Intersection**) and select the two intersecting surfaces. Click **Finish** to create the intersection curve.
Surface Design

Project
The **Project** command takes a sketch or curve and maps it onto a surface. Click the **Project** button on the **Curves** panel and select the curve or sketch to project. Right-click and select the surface onto which the sketch/curve will be mapped. Right-click and define the side of the projection. If you have selected a curve to project, the **Projection Plane Step** button is activated and you need to select a plane to define the projection direction. The curve will be projected in the direction normal to the selected plane. Click **Finish** to complete the projection.

![Project Image](image1.png)

Cross
The **Cross** command is similar to the **Project** command except that it creates a curve by projecting one sketch/curve onto the another sketch/curve. Click the **Cross** button on the **Curves** panel and select the first sketches/curve. Click the **Accept** button and select the second curve/sketch. Click **Accept** and **Finish** to create the cross curve.

![Cross Image](image2.png)

Wrap Sketch
The **Wrap Sketch** command wraps a sketch around the solid or surface body. The sketch should be on a plane tangent to the surface. Create a sketch on the plane tangent to the surface and click **Project > Wrap Sketch** on the **Curves** panel. Select the surface on to which you want to wrap the sketch, and then right-click. Select the sketch and right-click. Click **Finish** to wrap the sketch.

![Wrap Sketch Image](image3.png)
Contour

The Contour command creates curves on a surface. Activate this command (on the ribbon, Surfacing > Curves > Contour) select the surface. You can select a single or chain of surfaces. Click Accept after selecting the surface.

Start selecting points on the surface. On the command bar, click the Close button, if you want to close the curve. Click Accept and Finish to create the contour curve.

Isocline

The Isocline command creates a curve on a surface by using a plane. You need to select a plane, and then specify an angle; a curve will be created at the point where the selected plane touches the surface when inclined at the specified angle. For example, click the Isocline button on the Curves panel and select the Front(XZ) plane. Select the solid or surface body. Type-in the inclination angle and click the arrow to define the side of the isoclines curve. Click Accept and Finish to create the curve.

Derived

The Derived command creates a curve from the selected edges of solid/surface geometry. Click the Derived button on the Curves panel and select the edges of the geometry. Click Accept and Finish to create the derived curve.
Split
The Split command splits a curve using an intersecting plane, curve, body, or point. Click the Split command on the Curves panel and select the curve. Right-click and select the intersecting elements. Click Accept and Finish.

Intersection Point
The Intersection Point command creates points at the intersection of a curve/edge and another element. Click the Intersection Point button on the Curves panel. Select a curve/edge and right-click. Select a plane, axis or body. Click Accept and Finish.

Swept Surfaces
The Swept command creates a surface by sweeping one or more cross-sections along guide curves. It also provides various options to control the shape along the guides. To create a swept surface, first create a sweep profile and a path. On the ribbon, click Surfacing > Surfaces > Swept. On the Sweep Options dialog, select the Single path and cross section option and click OK. Select the path and right-click. Select the cross-section and right-click. Click Finish on the command bar.
Various ways of creating swept surfaces are given next.
BlueSurf
This command creates a surface between two or more cross-sections. You can also add guide curves to specify the shape between two sections. Make sure that the guide curve is continuous without any sharp edges and touches the cross-sections as well.

BlueSurf between cross-sections
Activate the BlueSurf command (on the ribbon, click Surfacing > Surfaces > BlueSurf). Select the first cross-section and right-click. Likewise, select the second and third cross-sections.

You can use the Deselect All icon to deselect all the selected cross sections.

Select any option from the Tangency Control handles attached to the cross-sections. Click Next and Finish on the command bar.
BlueSurf using Cross-sections and Guide Curves
Activate the BlueSurf command and select the cross-sections. Click Accept (green check) on the command bar after selecting each cross-section.

Click Guide Curve Step after selecting all the cross-sections. Now, select the guide curves one-by-one. Click Accept after each selection.

Select the Tangency Control options and click Next. Click Finish to complete the Bluesurf.
If you want to modify the shape of the Bluesurf by adding a new section, then click on the surface and select **Edit Definition**. On the command bar, click the **Insert Sketch Step** button and define the location of the new cross-section plane. Click **Next** and **Finish** to complete the bluesurf. You will notice that a new sketch appears in the Pathfinder. Modify the shape of this sketch to modify the bluesurf.

Bounded

The **Bounded** command can be used either to patch holes in models or to create complex surfaces. As a patching tool, the **Bounded** command is more robust than deleting holes. It provides more discrete control over the definition of the resultant patch. For example, consider the model shown in figure. You can see that a face is missing. In a case like this, the **Bounded** command can be used to fill the gap.

To create a bounded surface, click **Surfacing > Surfaces > Bounded**. Next, you need to select the patch boundaries. To select the patch boundaries, set the **Selection Type** to **Chain** and click on anyone of the open...
edges. Now, you need to set the tangent condition. You can use the **Tangency Control** handle attached to the selected boundary. The options in this handle are **Natural**, **Tangency Continuous**, and **Curvature Continuous**. Most of the gap edges should be tangent to the surrounding faces. For this example, bounded surface should be natural, as shown in Figure. Use the **Common Tangent Condition** button to apply the tangent condition to all edges.

After specifying the required settings, click **Accept** and **Finish** to create the bounded surface, as shown below.

You can also use the **Bounded** command for creating a new surface. Activate this command and select the boundary. Right-click to accept the selection. Click the **Guide Curve Step** button and then select the guide curves. The preview of the bounded surface appears. After defining the required settings, click **Accept** and **Finish** to create the bounded surface.
The \textbf{Ruled} command creates surfaces attached to edges of existing surfaces. You can find the \textbf{Ruled Surface} command on the \textbf{Surfaces} panel. You can create five types of ruled surfaces using the options in the command bar. These five types of ruled surfaces are discussed next.

The first type is tangent ruled surface. To create a tangent ruled surface, select the \textbf{Tangent Continuous} option from the \textbf{Ruled Options} drop-down on the command bar. Select an edge from the model. You will notice that the preview of the ruled surface appears. The resultant surface will be tangent to the selected edge. In this case, the selected edge is associated with two reference surfaces (the vertical and the top surfaces). As a result, there will be two solutions available from the selected edge. Click the \textbf{Alternate Face/Side} button on the command bar to view the alternate solution. Enter a distance value in the \textbf{Distance} box. Click \textbf{Accept} to create the ruled surface.
Select the **Normal to face** option from the **Ruled Options** drop-down to create a ruled surface normal to the supporting surface. Use the arrow to change the direction of the surface.

Use the **Natural** option to create a ruled surface without any constraining condition.

Use the **Along an axis** option to create a ruled surface by sweeping the selected edge along an axis. Select a sketch, edge, or curve to define the reference axis. Select the edge, and then define the **Distance** and **Angle** values.
Select the **Tapered to plane** option from the **Ruled Options** drop-down to create a ruled surface at an angle to a plane. Select a planar face or plane to define the reference. Select an edge from the model.

Specify the distance and taper angle of the ruled surface in the **Distance** and **Angle** boxes. Click the arrow to change the direction of the ruled surface. Click **Accept** to create the ruled surface.

Offset

To create an offset surface, activate the **Offset** command (click **Surfacing > Surfaces > Offset** on the ribbon) and select the faces to offset. Right-click to accept the selection. Next, type-in a value in the **Distance** box and click to define the side of the offset surface. Click **Finish** to complete the offset surface.
Redefine

This command creates a surface by merging two or more closely connected surfaces. This command is very useful when a solid or surface body contains split faces, as shown in figure. Activate this command (on the ribbon, click **Surfacing > Surfaces > Redefine**) and select the closely connected faces. Right-click to accept the selection. On the command bar, click the **Options** button and check the **Replace faces on solid body** option in case of a solid body. Click **OK** to close the dialog. Click **Accept** and **Finish** to redefine the faces.

Copy

This command creates a copy of existing surfaces. Activate this command (on the ribbon, click **Surfacing > Surfaces > Copy**) and select the surfaces to copy. Right-click to accept the selection, and then click **Finish**. Hide the original body to view the copied surface.

The **Remove Internal Boundaries** button will copy the surface by removing the internal boundaries.
The Remove External Boundaries button will copy the surface by removing the external boundaries.

Creating Surface Blends
Surface blends have several uses. They can span across gaps between faces or can be useful in blending complex surfaces. For example, you can create a surface blend, which spans across a gap between two faces. To do this in the Ordered environment, activate the Round command (on the ribbon, click Home > Solids > Round) and click the Round Options button. On the Round Options dialog, select the Surface blend option and click OK. Select the first face and second face chain. Type-in a value in the Radius box and click Accept. Now, click to define the side of the blend. Make sure that the arrows point inwards.
Click the Surface Blend Parameters button on the command bar to open the Surface Blend Parameters dialog. The Trim and stitch input faces option on this dialog trims the selected faces up to the blend edges and stitches them. If you uncheck this option, the faces will not be trimmed. The Trim output blend option trims the blend to match the side edges of the selected faces.

Click Preview and Finish to create the blend surface.

In the Synchronous environment, you can create surface blends using the Blend command (on the ribbon, click Home > Solids > Round drop-down > Blend).

Trim
This command trims a portion of a surface using a trimming tool. The trimming tool can be a surface, plane or a sketched entity. Activate this command (click Surfacing > Modify Surfaces > Trim on the ribbon) and select the target body. Right-click to accept the selection. On the command bar, set the Selection type, and then click on the trimming tool. Click Accept on the command bar. Select the region to remove and right-click. Click Finish to trim the surface.
You can also trim a surface using a sketch. Activate the Trim command and select the target body. On the command bar, click Accept, and then click on the sketch. Right-click and select the region to remove. Click Accept and Finish to complete the trim operation.

Extend

During the design process, you may sometimes need to extend a surface. You can extend a surface using the Extend command. Activate this command (On the ribbon, click Surfacing > Modify Surfaces > Extend) and click the surface to extend. Right-click to accept.

After selecting an edge, you can define the distance of the extension surface by using the Finite Extent and Extend To options. If you select the Finite Extent option, you can define the distance by entering a value in the Distance box. If you select the Extend To option, you can define the distance by selecting a boundary surface.
When the surface you have selected is not a planar one, you can decide the type of extension by using the **Extend Type** options. Use the **Curvature Continuous** option to extend the surface by maintaining the curvature of the original surface. If you select the **Linear** option, the extended surface will be created tangent to the original surface. The **Reflective** option extends the surface by reflecting the original surface. Click **Finish** after defining the distance of the extension.

Intersect

This command trims or extends a set of surfaces by the distance that you specify or up to another surface. Activate this command (on the ribbon, click **Surfacing > Surfaces > Intersect**) and select two surfaces. If you want to extend a surface, then you need to select the surface to be extended and the boundary surface. Right-click and click on the edge to extend. Click **Accept** and **Finish** to extend the surface.

If you want to trim surfaces, activate the **Intersect** command and select two or more surfaces. Right-click and select the region to remove. On the command bar, click the **Stitch** button to stitch surfaces. Click **Accept** and **Finish** to trim the surface.

Stitched Surfaces

The surfaces created act as individual surfaces unless they are stitched together. The **Stitched** command lets you combine two or more surfaces to form a single surface. To stitch surfaces, activate this command (click **Surfacing > Modify Surfaces > Stitched** on the ribbon). On the **Stitched Surface Options** dialog, type-in a value in the **Stitched tolerance** box. The value you type in this box defines the tolerance gap. All the surfaces within the tolerance gap will be stitched. The **Heal stitched surfaces** option closes the gap between the stitched surfaces. Click **OK** and select the surfaces to stitch.
Click the Accept and Finish buttons to stitch the surfaces.

Thicken
Creating a solid from a surface can be accomplished by simply thickening a surface. To add thickness to a surface, activate the Thicken command (on the ribbon, click Home > Solids > Add drop-down > Thicken) and click on a face of the surface geometry. Enter the thickness value in the Distance box. Move the pointer inwards or outwards to define the side of material addition. Place pointer on the surface body and click to add material on both sides of the surface. Click Finish to thicken the surface.

Replace Face
The Replace Face command replaces a face or group of faces with another face or group of faces. To replace a face, activate this command (on the ribbon, click Surfacing > Modify Surfaces > Replace Face). Select the faces to replace and click Accept. Select the replacement surface and click Finish.
Split
The Split command splits a face or a body using a plane, body, curve or sketch. Click the Split button on the Modify Surfaces panel and select a face or body. Right-click and select a splitting element. Click Accept and Finish.

Example
In this example, you will construct the model shown below.
Surface Design

Drawing the Layout Curves

1. Start Solid Edge ST8.
2. Start a new part file using the ISO Metric Part template.
3. Right-click and select Ordered to switch to the ordered environment. In this tutorial, you will create the surface model in Ordered environment as you can edit the surfaces easily. You can also create this model in Synchronous environment.
4. Create a spreadsheet with the following values and save it as Curve1. You can also download this file from our website.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-75</td>
<td>0</td>
<td>-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-65</td>
<td>0</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-67</td>
<td>0</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-80</td>
<td>0</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-66</td>
<td>0</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-45</td>
<td>0</td>
<td>182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>0</td>
<td>182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>0</td>
<td>160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. On the ribbon, click Surfacing > Curves > Keypoint drop-down > Curve by table.
6. On the Insert Object dialog, select the Create from file option and click the Browse button. Go to the location of the Curve1 spreadsheet, select it, and click Open. Click OK on the dialog.
7. On the Command bar, click the Parameters Step button and set the Curve Fit to Smoothening on. Set the Curve End Conditions to Open. Set the Coordinate System to Base and click OK.
8. Click Finish to create the curve, as shown below.

9. Create another spreadsheet with the following values and save it as Curve2.
10. On the ribbon, click **Surfacing > Curves > Keypoint** drop-down > **Curve by table**.
11. On the **Insert Object** dialog, click the **Browse** button and open the **Curve2** spreadsheet. Click **OK** on the dialog.
12. Click **Finish** to create the curve, as shown below.

13. Create another spreadsheet with the following values and save it as Curve3.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>0</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>0</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>112</td>
<td>0</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>117</td>
<td>0</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>114</td>
<td>0</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>95</td>
<td>0</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>0</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>0</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>

14. Activate the **Curve by table** command and select the Curve3 spreadsheet. Click **Finish** to create the third curve.
Creating the Front Surface

1. On the ribbon, click Home > Sketch > Sketch and select the XY plane
2. Create an arc and add dimensions to it. Click the Close Sketch button on the ribbon. Click Finish on the command bar.
3. Create an arc on the YZ Plane and add dimensions to it. Finish the sketch.
4. Create a plane normal to the first curve.
5. Create an arc on the plane normal to curve. Finish the sketch.

6. Activate the Swept command (on the ribbon, click Surfacing > Surfaces > Swept).

7. On the Sweep Options dialog, select the Multiple paths and cross section option. Select the Along path option from the Face Merging section and click OK.

8. Click on the first curve to define the path. Click the green check on the command bar to accept the selection.

9. On the command bar, click Next to activate the Cross Section Step. Select the arc located on the XY plane to define the first cross section. Make sure that you have selected the arc by clicking at the point, as shown in figure. Click the green check on the command bar.

10. Select the second arc by clicking at the point, as shown in figure. Click the green check to define the second cross section.

11. Likewise, select the third cross section. Click Preview to preview the swept surface.

12. Click Finish to complete the swept surface. Click Cancel to deactivate the command.
13. Save the file. As you are creating a complex geometry, it is advisable that you save the model after each operation.

Creating the Label surface

1. Create an arc on the XY plane. Finish the sketch.

2. Activate the Extruded command (on the ribbon, click Surfacing > Surfaces > Extruded). On the command bar, click Create-From Options drop-down > Select from Sketch.
3. Select the sketch and click the green check on the command bar. Deactivate the SymmetricExtent button on the command bar. Type-in 220 in the Distance box on the command bar. Move the pointer upward and click to define the side of the extrusion. Click Finish to complete the extruded surface.
4. On the ribbon, click Surfacing > Pattern > Mirror Copy Part. Select the extruded surface and right-click.
5. Select the XZ plane and click Finish to mirror the extruded surface.
Creating the Back surface
1. Create an arc on the XY plane. Finish the sketch.

2. Activate the Swept command and select Single path and cross section option on the Sweep Options dialog. Click OK.
3. Select second curve to define the path of the swept surface. Click the green check to accept the selection.
4. Select the arc and click the green check to define the cross section. Click Finish and Cancel to complete the swept surface.
Trimming the Unwanted Portions

1. Activate the **Intersect** command (on the ribbon, click **Surfacing > Modify Surfaces > Intersect**).
2. Select the front swept surface and extruded surfaces. Click the green check.
3. Click on the portions to trim, as shown in figure.
4. Select the **Stitch** button on the command bar. Click the green check to trim the selected portions. Click **Finish**.
5. With the **Intersect** command still active, select the back swept surface and the stitched surface. Click the green check.
6. Select the portions of the back swept surface and stitched surface, as shown below. Click the green check.
7. Click Finish and Cancel.

8. Activate the Trim \(\text{Trim}\) command (on the ribbon, click Surfacing > Modify Surfaces > Trim) and click on the surface body. Click the green check.

9. Select the XY Plane, and then click the green check.

10. Select the portion of the target surface, as shown. Click the Accept button on the command bar.

11. Click Finish and Cancel.

Creating the Handle Surface

1. Activate the Normal to Curve command and click on the lower end-point of the third curve. Left click to create the plane normal to the curve.

2. Start a sketch on the plane normal to the curve.

3. Create an ellipse on the sketch plane.

4. Make the upper quadrant point of the ellipse coincident with the end-point of the curve.

332
5. Add dimensions and relations to the sketch. Finish the sketch.

5. Activate the **Swept** command and create the handle surface.

6. Activate the **Round** command and round the edge between the front and back surfaces. The round radius is 25.

Trimming the Handle

1. On the ribbon, click **Surfacing > Planes > More Planes** drop-down > **Parallel**.
2. Select the YZ plane from the Base Coordinate System. Type-in 75 in the **Distance** box and press Enter. Move the pointer toward right and click.
3. Activate the **Trim** command and click on the Handle surface. Right-click to accept the selection.
4. Select the parallel plane and right-click to accept.
5. Select the region of the handle, as shown below. Click the green check on the command bar, and then click **Finish**.

6. Create a plane, which is normal to the third curve and located at the top end-point.

7. Start a sketch on the plane normal to the curve and draw an ellipse. Add dimensions to position the ellipse, and then finish the sketch.
8. Activate the **Trim** command (on the ribbon, click **Surfacing > Modify Surfaces > Trim**) and click on the main body. Right-click to accept the selection.

9. Select the ellipse and right-click.

10. Select the surface region enclosed by the sketch. Right-click, and then click **Finish**.

Blending the Top handle

1. Activate the **BlueSurf** command (on the ribbon, click **Surfacing > Surfaces > BlueSurf**) and click on the edges of the trimmed openings. Select the **Tangent Continuous** option from the drop-down attached to the handle edge. Select the **Natural** option from the drop-down attached to the main body edge.

2. Right-click and click **Finish** to create the BlueSurf surface. Click **Cancel** to deactivate the command.

Blending the Bottom handle

1. On the ribbon, click **Surfacing > Planes > More Planes** drop-down > **Tangent** and select the handle surface.

2. On the Command bar, click **Keypoints** drop-down > **Silhouette**. Select the top silhouette point of the handle’s lower edge. A plane tangent to the handle surface is created.
3. Create an ellipse on the new plane and trim it by half. Finish the sketch. Ensure that the sketch lies inside the handle surface.

4. Extrude the sketch up to an arbitrary distance in both the directions.
5. Activate the **Intersect** command.
6. Click on the handle and the extruded surfaces, and then right-click to accept.
7. Select the portions of the handle and extruded surfaces in the sequence shown below.
8. On the command bar, click the **Stitch** button, and then right-click. Click **Finish** to trim and stitch the surfaces.

9. Select the handle and main body, and then right-click to accept the selection.
10. Rotate the model, select the intersecting portion, and stitched portion.
11. Make sure that the **Stitch** button is active. Click the **Accept** and **Finish** buttons to trim the surface.

12. Activate the **Round** command and round the edge of the handle. The round radius is 6 mm.
13. Round the intersection between the main surface and handle. The round radius is 5 mm.

Creating the Neck and Spout
1. Draw a sketch on the XZ Plane for the revolved surface. Finish the sketch.

2. On the ribbon, click Surfacing > Surfaces > Revolved. On the command bar, set the Create-From Options type to Select from Sketch.
3. Select the sketch and right-click to accept.
4. Select the centerline and click the Revolve 360 button on the command bar. Click Finish and Cancel.
5. Activate the **Intersect** command, and trim the revolved and main surface. Stitch them together.

Rounding the Label Faces

1. Activate the **Round** command and set the **Selection type** to **Face**. Click on the front and back label faces.
2. Type-in 10 in the **Radius** box, and right-click. Click **Preview** and **Finish** to create the round.
Creating the Bottom Face

1. Start a sketch on the YZ plane and draw a curve, as shown below.

2. Activate the **Bounded** command (on the ribbon, click **Surfacing > Surfaces > Bounded**) and click on the edge-set at the bottom of the surface model. Right-click to accept the selection.
3. On the command bar, click the **Guide Curve Step** button and select the spline.
4. On the command bar, make sure that the **Common Tangent Condition** button is activated. Click the green check to accept the guide curve selection.
5. Click **Finish** and **Cancel**.

Rounding the Bottom Face

1. On the ribbon, click **Surfacing > Modify Surfaces > Stitched**. Click **OK** on the **Stitched Surface Options** dialog.
2. Select all the surfaces. Click the green check on the command bar.
3. Click **Finish** and **Cancel**.
4. Activate the **Round** command and select the **Selection Type** to **Loop**.
5. Select the edge set at the bottom and type-in 10 in the **Radius** box. Right-click and click **Preview**.
6. Click **Finish** and **Cancel**.
Blending the Bluesurface and Main body
1. Activate the **Round** command and click the **Round Options** button on the command bar. On the **Round Options** dialog, select the **Surface blend** option and click **OK**.
2. On the command bar, click the **Surface Blend Parameters** button and check the **Trim and stitch input faces** and **Trim output blend** options. Click **OK**.
3. Select the bluesurface and the main surface body connected to it.
4. Type-in 30 in the **Radius** box and click **Accept**.
5. Move the pointer such that the arrow points towards front. Click to define first side.
6. Move the pointer such that the arrow points upwards. Click to define the second side.
7. Click **Preview** and **Finish** to complete the blend surface.

Adding thickness to the model
1. Activate the **Thicken** command (on the ribbon, click **Home > Solids > Add drop-down > Thicken**) and click on the surface body.
2. On the command bar, type-in 1.5 in the **Distance** box.
3. Move the pointer such that the arrow points outward, and then click to define the thickness side.
4. Click Finish to thicken the surface model.
5. Activate the **Round** command, and then blend the sharp edges of the neck and spout.

Creating threads
1. Create the cross-section and axis of the thread on the XZ Plane, as shown below. Finish the sketch.
Surface Design

2. Activate the **Helical Protrusion** command (on the ribbon, click **Home > Solids > Add drop-down > Helical Protrusion**) and select **Select from sketch** option from the **Create-From Options** drop-down.
3. Select the cross-section and right-click.
4. Select the centerline to define the axis. Click on the top endpoint of the centerline to define the start point of the helical protrusion.
5. Set the **Helix method** to **Pitch & Turns**. Type-in 6 and 2 in the **Pitch** and **Turns** boxes, respectively. Click **Next** and **Preview** to view the helix.
6. Click **Finish** to complete the helical protrusion.

![Helical Protrusion](image)

Embossing the label faces

1. Create a plane parallel to the XZ plane. Offset distance is 100.
2. Start a sketch on the parallel plane and click **Home > Draw > Project to Sketch** on the ribbon.
3. On the **Project to Sketch Options** dialog, and check the **Project with offset** option. Click **OK**.
4. Set the **Selection Type** to **Loop** and click on the inner edge of the round, as shown below. Click **Accept**.
5. Type-in 15 in the **Distance** box and click inside the loop. The edge loop will be projected.
6. Click on the offset constraints displayed on the sketch and press **Delete**.
7. Add 12 radius fillets to the corners of the sketch. Finish the sketch.

![Embossing Label Faces](image)
8. On the ribbon, click **Home > Solids > Add Body** and click **OK** on the **Add body** dialog. A new body is created within the part file.

9. On the ribbon, click **Home > Solids > Extrude** and select the sketch. Click **Accept**.

10. On the command bar, click the **From/To Extend** button and select the sketch plane to define the ‘From’ surface.

11. Rotate the model and select the inner face of the label face to define the ‘To’ surface.

12. On the command bar, click **Treatment Step** and select the **Draft** button.

13. Type-in 5 in the **Angle 2** box and click the **Flip 2** button. Make sure that the arrow 2 points outwards.

14. Click **Preview** and **Finish** to create the **Extrude** feature.

15. On the ribbon, click **Home > Solids > Thin Wall drop-down > Emboss**.

16. Select the target and tool bodies, as shown in figure. Click the **Direction** button on the command bar to reverse the direction of the emboss feature.

17. Type-in 0.5 and 1 in the **Clearance** and **Thickness** boxes, respectively.
18. Click **Accept** to create the emboss feature.

19. Under the PathFinder, uncheck the **Design Body_2** option to hide it.

20. Click the right-mouse button on **Design Body_1** and select **Activate Body**. This activates the main body.

21. On the ribbon, click **Home > Pattern > Mirror drop-down > Mirror Copy Feature** and click the **Fast** button on the command bar.

22. Select the emboss feature and right-click.

23. Select the XZ plane from the Base Coordinate system and click **Finish**. The emboss feature is mirrored about the XZ plane.
24. Activate the **Round** command and set the **Selection Type** to **Chain**.
25. Select the outer edges of the emboss features and type-in 3 in the **Radius** box. Click **Accept**.
26. Click **Preview** and **Finish** to complete the round feature.

Measuring the Volume of the bottle
1. Activate the **Physical Properties** command (on the ribbon, click **Inspect > Physical Properties > Physical Properties**).
2. On the **Physical Properties** dialog, click the **Change** button under the **Density** section.
3. On the **Solid Edge Material Table** dialog, click **Material > Non-metals > Plastics > Polyethylene, low density**. Click **Apply to Model**. Click **Update** to display the physical properties of the bottle on the dialog. Click **Close**.
4. Save and close the file.

Questions
1. What is the use of the **Stitched** command?
2. How many types of rounds can be created in Solid Edge?
Surface Design

3. Why do we use the **Boundary** command?
4. Which command can be used to bridge gap between two surfaces?
5. Name the command that can be used to perform a variety of operations.
6. How do you add thicknesses to a surface body?
7. Which command is used to extend surfaces from an edge?
8. Which command is used to offset faces?
Index

3D Fillet, 44
3D Line, 41
Add, 73
Add Body, 157
Add to Pattern, 109
Adjustable Assembly, 201
Aligned Holes, 171
Allow Boundary Touching, 113
Along Curve Pattern, 110
Angle, 190
Angle Between, 25
Angled plane, 70
Application Menu, 7
Arc by 3 Points, 19
Arc by Center Point, 19
Assembly Features, 202
Assembly of Active Model, 184
Assembly Relationship Assistant, 207
Auto Explode, 208
Automatic, 73
Automatic Centerlines, 245
Automatic Coordinate Dimensions, 244
Auxiliary View, 232
Axial Align, 189
Axis Step, 128
Base Reference Planes, 15
Bead, 279
Bend, 276
Bend Table, 289
Blend, 95
Blend between faces, 96
BlueSurf, 311
Bolt Hole Circle, 246
Bounded, 313
Box, 66
Break Corner, 283
Broken Out, 236
By 2 Points, 25
By 3 Points, 69
By Midpoint, 20
By Vertex, 20
Callout, 246
Cam, 194
Capture Fit, 195
Center Mark, 245
Center-Plane, 191
Chamfer, 35
Chamfer Unequal Setbacks, 98
Change Coordinate Origin, 244
Check Interference, 194
Circle by 3 Points, 21
Circle by Center Point, 21
Circular Pattern, 110
Close 2-Bend Corner, 272
Closed, 73
Closed Extent, 143
Coaxial, 43
Coincident by Axis, 71
Coincident Plane, 43, 67
Collapse, 211
Collinear, 31
Command bar, 10
Command Finder, 9
Compare Drawings, 249
Concentric, 27, 169
Connect, 27, 190
Construction, 33
Contour, 308
Contour Flange, 273
Coordinate Dimension, 243
Coordinate System, 69
Coplanar, 169
Copy, 174, 318
Counterbore Hole, 89
Countersink Hole, 90
Create alignment shape, 241
Create Part features, 205
Create Part In-Place, 205
Cross, 307
Crown, 76
Curve, 22
Curve by Table, 305
Customize, 10
Cut, 73, 283
Cutting Plane, 232
Cylinder, 66
Derived, 308
Design Intent, 175
Detach Faces, 173
Detail View, 235
Detect Collisions, 187
Dialogs, 11
Dimensions, 242
Dimple, 278
Disperse, 202
Display Options, 237
Distance Between, 24, 243
Draft, 98
Surface Design

Drag Component, 187, 211
Drag Components, 186
Drawing of Active Model, 230
Drawn Cutout, 279
Edit In Place, 206
Ellipse by 3 Points, 22
Ellipse by Center Point, 22
Emboss, 160
Equal, 28
Equal Radius, 171
ERA, 208
Exclude Internal Loops, 72
Explode, 209
Exploded View, 237
Export to DWF, 290
Extend, 321
Extend to Next, 36
Extend/ Trim, 173
Extent Type, 74
Extrude, 63
Extruded Surface, 304
Face Continuity, 127
Face Merging, 126
Face Relations, 169
File Types, 4
Fill Pattern, 112
Fillet, 34
Finite Depth, 152
Finite Extend, 321
Flange, 270
Flat Pattern, 284
Flow Lines, 212
From-To, 75
Grid Options, 18
Ground, 193
Guide Curves, 143
Gusset, 281
Helical Cutout, 133
Helix, 131
Hem, 275
Hole, 85
Horizontal/Vertical, 28, 172
Include Internal Loops, 72
Insert, 189
Insert Component, 183
IntelliSketch Options, 26
Intersect, 159, 322
Intersection, 306
Intersection Point, 309
Isocline, 308
Jog, 277
Keypoint Curve, 305
Leader, 247
Lift, 173
Line, 17
Lip, 153
Live Section, 177
Lock, 28
Loft, 141
Loft Cross-sections, 142
Loft Cutout, 146
Lofted Flange, 284
Louver, 280
Maintain Alignment, 239
Maintain Relationships, 31
Maintain Symmetry About Base Planes, 175
Match Coordinate Systems, 192
Mate, 188
Material Properties, 76
Mirror, 39, 107
Mirror Components, 200
Model Display Settings, 234
Model Priority, 174
Modify Holes, 91
Mounting Boss, 153
Move, 39
Move faces, 173
Multi Body Publish, 159
Multiple paths and cross-sections sweeps, 129
New 3D Sketch, 40
Normal to Curve, 68
Offset, 37, 170, 317
Offset Surface, 317
On Plane, 42
Open, 73
Parallel, 27, 171, 191
Parallel plane, 70
Part to Sheet Metal, 287
Partial Flange, 272
Parts Library, 183, 184
Parts List, 240
Path, 193
Pathfinder, 8
Pattern by Table, 111
Perpendicular, 29
Perpendicular plane, 71
Physical Motion, 187
Planar Align, 188
Polygon by Center, 20
Principal View, 231
Project, 307
Prompt Bar, 8
Quick Access Toolbar, 7
Quick View Cube, 9
Index

Radial Fill Pattern, 114
Radial Menus, 11
Recognize Hole Patterns, 115
Recognize Holes, 92
Recognize Patterns, 115
Rectangle by 2 Points, 20
Rectangle by 3 Points, 20
Rectangle by Center, 19
Rectangular Fill Pattern, 112
Rectangular Pattern, 108
Redefine, 318
Relationship Assistant, 32
Relationship Handles, 32
Remove External Boundaries, 319
Remove Internal Boundaries, 318
Repair Missing Files, 198
Replace Face, 323
Replace Part, 197
Reposition, 211
Retrieve Dimensions, 242
Revolve, 64
Revolved Section View, 234
Revolved Surface, 304
Rib, 151
Rigid Set, 29, 193
Rotate, 39
Rotate faces, 175
Round, 93, 319
Ruled Surfaces, 315
Save As Flat, 290
Scale, 40
Scale along path, 127
Section, 233
Section Alignment, 127
Section Geometry, 144
Section View, 232
Select Set Priority, 174
Selection Type, 72
Sew, 322
Sheet Metal Drawings, 288
Shortcut Menus, 12
Show Grid, 17
Side Step, 74
Simple Hole, 86
Single path and cross-section sweeps, 124
Sketch, 16
Slot, 155
Smart Dimension, 23
Snap to Grid, 17
Solid Edge Options, 12
Solution Manager, 176
Sphere, 67
Split, 35, 157, 309, 324
Staggered Fill Pattern, 113
Starting a Sheet Metal part, 267
Status Bar, 8
Steering Wheel Tool, 172
Stitched Surfaces, 322
Stretch, 40
Sub-асsemblies, 200
Subassembly Parts List, 241
Subtract, 159
Suppress Instance, 112
Surface Blend Parameters, 320
Sweep, 123
Swept Cutout, 130
Swept Surfaces, 309
Symmetric, 31
Symmetric Diameter, 33
Symmetric Line, 18
Symmetric Offset, 38
Symmetry, 170
Synchronous, 284
Tab, 268
Tangency Controls, 142
Tangent, 30, 69, 172, 190
Tangent Arc, 18
Tangent Circle, 21
Tapered Hole, 88
Technical Requirements, 248
Text, 247
Thicken, 323
Thin Part to Synchronous Sheet Metal, 286
Thin Wall, 99
Thread, 92
Threaded Hole, 87
Through All, 74
Through Next, 74
Tip, 173
Transfer, 201
Transition to Ordered, 15
Treatments options, 75
Trim, 36, 320
Trim Corner, 37
Twist, 128
Unexplode, 209
Union, 158
Update Active Level, 196
Use Occurrence Footprint, 112
Use Only Internal Loops, 72
User Interface, 4
Variable Radius Blend, 95
Vent, 154
View Alignment, 238
<table>
<thead>
<tr>
<th>Surface Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Overrides, 13</td>
</tr>
<tr>
<td>View Wizard, 230</td>
</tr>
<tr>
<td>Web Network, 152</td>
</tr>
</tbody>
</table>